8 research outputs found

    The maximum kk-colorable subgraph problem and related problems

    Get PDF
    The maximum kk-colorable subgraph (MkkCS) problem is to find an induced kk-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the MkkCS problem that considers various semidefinite programming relaxations including their theoretical and numerical comparisons. To simplify these relaxations we exploit the symmetry arising from permuting the colors, as well as the symmetry of the given graphs when applicable. We also show how to exploit invariance under permutations of the subsets for other partition problems and how to use the MkkCS problem to derive bounds on the chromatic number of a graph. Our numerical results verify that the proposed relaxations provide strong bounds for the MkkCS problem, and that those outperform existing bounds for most of the test instances

    The Impact of Symmetry Handling for the Stable Set Problem via Schreier-Sims Cuts

    Full text link
    Symmetry handling inequalities (SHIs) are an appealing and popular tool for handling symmetries in integer programming. Despite their practical application, little is known about their interaction with optimization problems. This article focuses on Schreier-Sims (SST) cuts, a recently introduced family of SHIs, and investigate their impact on the computational and polyhedral complexity of optimization problems. Given that SST cuts are not unique, a crucial question is to understand how different constructions of SST cuts influence the solving process. First, we observe that SST cuts do not increase the computational complexity of solving a linear optimization problem over any polytope PP. However, separating the integer hull of PP enriched by SST cuts can be NP-hard, even if PP is integral and has a compact formulation. We study this phenomenon more in-depth for the stable set problem, particularly for subclasses of perfect graphs. For bipartite graphs, we give a complete characterization of the integer hull after adding SST cuts based on odd-cycle inequalities. For trivially perfect graphs, we observe that the separation problem is still NP-hard after adding a generic set of SST cuts. Our main contribution is to identify a specific class of SST cuts, called stringent SST cuts, that keeps the separation problem polynomial and a complete set of inequalities, namely SST clique cuts, that yield a complete linear description. We complement these results by giving SST cuts based presolving techniques and provide a computational study to compare the different approaches. In particular, our newly identified stringent SST cuts dominate other approaches

    On a Clique-Based Integer Programming Formulation of Vertex Colouring with Applications in Course Timetabling

    Full text link
    Vertex colouring is a well-known problem in combinatorial optimisation, whose alternative integer programming formulations have recently attracted considerable attention. This paper briefly surveys seven known formulations of vertex colouring and introduces a formulation of vertex colouring using a suitable clique partition of the graph. This formulation is applicable in timetabling applications, where such a clique partition of the conflict graph is given implicitly. In contrast with some alternatives, the presented formulation can also be easily extended to accommodate complex performance indicators (``soft constraints'') imposed in a number of real-life course timetabling applications. Its performance depends on the quality of the clique partition, but encouraging empirical results for the Udine Course Timetabling problem are reported

    Partitioning into Isomorphic or Connected Subgraphs

    Get PDF
    This thesis deals mainly with the partitioning and connectedness of graphs. First, we show that the problem of partitioning the nodes of a graph into a specific number of subsets such that the induced subgraphs on these sets are isomorphic to one another is NP-complete. If the induced subgraphs have to be connected, the problem remains NP-complete. Then we inspect some special graph classes for which the problem is solvable in polynomial time. Afterwards, we deal with the problem of defining a polytope by incidence vectors of nodes, which induce a connected graph. We inspect some facet-defining inequalities and their general structure. For some graph classes we state the full description. We then proceed to the problem of partitioning the nodes of a graph into a given number of parts such that the induced graphs are connected. For the corresponding polytope we show the dimension and some facet defining inequalities. This theoretical inspection is advanced by the problem of partitioning a graph into different parts such that the parts induce a connected graph in order to maximize the induced cut. We introduce different ideas for solving this problem in SCIP and show the numerical results. This leads to interesting problems on MIPs in general. As the problem in literature generally deals with the feasible region, we focus on the objective function. To do that, we inspect the problem of finding MIPs for problems with nonlinear objective functions. We discuss properties and requirements showing the existence or non-existence of particular formulations. Lastly, we inspect the problem of partitioning the nodes of a graph such that all but one class are isomorphic. This problem becomes interesting if the part not inducing the isomorphism is minimized. For this purpose we also introduce a technique, which generates the parts by brute-force. Instead of partitioning the graph into isomorphic parts, we proceed to the problem of similar graphs. In this case we inspect different similarities and show algorithms which implement these

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the Chvátal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes

    THE MAXIMUM k-COLORABLE SUBGRAPH PROBLEM AND ORBITOPES

    Get PDF
    Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph problem is to select a k-colorable induced subgraph of largest weight. The natural integer programming formulation for this problem exhibits a high degree of symmetry which arises by permuting the color classes. It is well known that such symmetry has negative effects on the performance of branchand-cut algorithms. Orbitopes are a polyhedral way to handle such symmetry and were introduced in [19]. The main goal of this paper is to investigate the polyhedral consequences of combining problem-specific structure with orbitope structure. We first show that the LP-bound of the integer programming formulation mentioned above can only be slightly improved by adding a complete orbitope description. We therefore investigate several classes of facet-defining inequalities for the polytope obtained by taking the convex hull of feasible solutions for the maximum k-colorable subgraph problem that are contained in the orbitope. We study conditions under which facet-defining inequalities for the polytope associated with the maximum k-colorable subgraph problem and the orbitope remain facet-defining for the combined polytope or can be modified to yield facets. It turns out that the results depend on both the structure and the labeling of the underlying graph

    Convex optimization methods for graphs and statistical modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 209-220).An outstanding challenge in many problems throughout science and engineering is to succinctly characterize the relationships among a large number of interacting entities. Models based on graphs form one major thrust in this thesis, as graphs often provide a concise representation of the interactions among a large set of variables. A second major emphasis of this thesis are classes of structured models that satisfy certain algebraic constraints. The common theme underlying these approaches is the development of computational methods based on convex optimization, which are in turn useful in a broad array of problems in signal processing and machine learning. The specific contributions are as follows: -- We propose a convex optimization method for decomposing the sum of a sparse matrix and a low-rank matrix into the individual components. Based on new rank-sparsity uncertainty principles, we give conditions under which the convex program exactly recovers the underlying components. -- Building on the previous point, we describe a convex optimization approach to latent variable Gaussian graphical model selection. We provide theoretical guarantees of the statistical consistency of this convex program in the high-dimensional scaling regime in which the number of latent/observed variables grows with the number of samples of the observed variables. The algebraic varieties of sparse and low-rank matrices play a prominent role in this analysis. -- We present a general convex optimization formulation for linear inverse problems, in which we have limited measurements in the form of linear functionals of a signal or model of interest. When these underlying models have algebraic structure, the resulting convex programs can be solved exactly or approximately via semidefinite programming. We provide sharp estimates (based on computing certain Gaussian statistics related to the underlying model geometry) of the number of generic linear measurements required for exact and robust recovery in a variety of settings. -- We present convex graph invariants, which are invariants of a graph that are convex functions of the underlying adjacency matrix. Graph invariants characterize structural properties of a graph that do not depend on the labeling of the nodes; convex graph invariants constitute an important subclass, and they provide a systematic and unified computational framework based on convex optimization for solving a number of interesting graph problems. We emphasize a unified view of the underlying convex geometry common to these different frameworks. We describe applications of both these methods to problems in financial modeling and network analysis, and conclude with a discussion of directions for future research.by Venkat Chandrasekaran.Ph.D
    corecore