274 research outputs found

    Optimal Embedding of Functions for In-Network Computation: Complexity Analysis and Algorithms

    Full text link
    We consider optimal distributed computation of a given function of distributed data. The input (data) nodes and the sink node that receives the function form a connected network that is described by an undirected weighted network graph. The algorithm to compute the given function is described by a weighted directed acyclic graph and is called the computation graph. An embedding defines the computation communication sequence that obtains the function at the sink. Two kinds of optimal embeddings are sought, the embedding that---(1)~minimizes delay in obtaining function at sink, and (2)~minimizes cost of one instance of computation of function. This abstraction is motivated by three applications---in-network computation over sensor networks, operator placement in distributed databases, and module placement in distributed computing. We first show that obtaining minimum-delay and minimum-cost embeddings are both NP-complete problems and that cost minimization is actually MAX SNP-hard. Next, we consider specific forms of the computation graph for which polynomial time solutions are possible. When the computation graph is a tree, a polynomial time algorithm to obtain the minimum delay embedding is described. Next, for the case when the function is described by a layered graph we describe an algorithm that obtains the minimum cost embedding in polynomial time. This algorithm can also be used to obtain an approximation for delay minimization. We then consider bounded treewidth computation graphs and give an algorithm to obtain the minimum cost embedding in polynomial time

    Packing Odd Walks and Trails in Multiterminal Networks

    Get PDF
    Let G be an undirected network with a distinguished set of terminals T ? V(G) and edge capacities cap: E(G) ? ?_+. By an odd T-walk we mean a walk in G (with possible vertex and edge self-intersections) connecting two distinct terminals and consisting of an odd number of edges. Inspired by the work of Schrijver and Seymour on odd path packing for two terminals, we consider packings of odd T-walks subject to capacities cap. First, we present a strongly polynomial time algorithm for constructing a maximum fractional packing of odd T-walks. For even integer capacities, our algorithm constructs a packing that is half-integer. Additionally, if cap(?(v)) is divisible by 4 for any v ? V(G)-T, our algorithm constructs an integer packing. Second, we establish and prove the corresponding min-max relation. Third, if G is inner Eulerian (i.e. degrees of all nodes in V(G)-T are even) and cap(e) = 2 for all e ? E, we show that there exists an integer packing of odd T-trails (i.e. odd T-walks with no repeated edges) of the same value as in case of odd T-walks, and this packing can be found in polynomial time. To achieve the above goals, we establish a connection between packings of odd T-walks and T-trails and certain multiflow problems in undirected and bidirected graphs

    Parameterized Complexity Dichotomy for Steiner Multicut

    Get PDF
    The Steiner Multicut problem asks, given an undirected graph G, terminals sets T1,...,Tt \subseteq V(G) of size at most p, and an integer k, whether there is a set S of at most k edges or nodes s.t. of each set Ti at least one pair of terminals is in different connected components of G \ S. This problem generalizes several graph cut problems, in particular the Multicut problem (the case p = 2), which is fixed-parameter tractable for the parameter k [Marx and Razgon, Bousquet et al., STOC 2011]. We provide a dichotomy of the parameterized complexity of Steiner Multicut. That is, for any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)NP-complete). We highlight that: - The edge deletion version of Steiner Multicut is fixed-parameter tractable for the parameter k+t on general graphs (but has no polynomial kernel, even on trees). We present two proofs: one using the randomized contractions technique of Chitnis et al, and one relying on new structural lemmas that decompose the Steiner cut into important separators and minimal s-t cuts. - In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the parameter k+t on general graphs. - All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p=3 and the graph is a tree plus one node. Hence, the results of Marx and Razgon, and Bousquet et al. do not generalize to Steiner Multicut. Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1), and a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).Comment: As submitted to journal. This version also adds a proof of fixed-parameter tractability for parameter k+t using the technique of randomized contraction

    Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset

    Full text link
    Given a directed graph GG, a set of kk terminals and an integer pp, the \textsc{Directed Vertex Multiway Cut} problem asks if there is a set SS of at most pp (nonterminal) vertices whose removal disconnects each terminal from all other terminals. \textsc{Directed Edge Multiway Cut} is the analogous problem where SS is a set of at most pp edges. These two problems indeed are known to be equivalent. A natural generalization of the multiway cut is the \emph{multicut} problem, in which we want to disconnect only a set of kk given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006) showed that in undirected graphs multiway cut is fixed-parameter tractable (FPT) parameterized by pp. Marx and Razgon (STOC 2011) showed that undirected multicut is FPT and directed multicut is W[1]-hard parameterized by pp. We complete the picture here by our main result which is that both \textsc{Directed Vertex Multiway Cut} and \textsc{Directed Edge Multiway Cut} can be solved in time 22O(p)nO(1)2^{2^{O(p)}}n^{O(1)}, i.e., FPT parameterized by size pp of the cutset of the solution. This answers an open question raised by Marx (Theor. Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows from our result that \textsc{Directed Multicut} is FPT for the case of k=2k=2 terminal pairs, which answers another open problem raised in Marx and Razgon (STOC 2011)

    Two-stage stochastic minimum s − t cut problems: Formulations, complexity and decomposition algorithms

    Get PDF
    We introduce the two‐stage stochastic minimum s − t cut problem. Based on a classical linear 0‐1 programming model for the deterministic minimum s − t cut problem, we provide a mathematical programming formulation for the proposed stochastic extension. We show that its constraint matrix loses the total unimodularity property, however, preserves it if the considered graph is a tree. This fact turns out to be not surprising as we prove that the considered problem is NP-hard in general, but admits a linear time solution algorithm when the graph is a tree. We exploit the special structure of the problem and propose a tailored Benders decomposition algorithm. We evaluate the computational efficiency of this algorithm by solving the Benders dual subproblems as max-flow problems. For many tested instances, we outperform a standard Benders decomposition by two orders of magnitude with the Benders decomposition exploiting the max-flow structure of the subproblems
    corecore