25,937 research outputs found

    The edge-disjoint path problem on random graphs by message-passing

    Get PDF
    We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporating under a unique framework both traffic optimization and path length minimization. The min-sum equations for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we propose an efficient implementation by mapping the equations onto a weighted combinatorial matching problem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behaviour of both the number of paths to be accommodated and their minimum total length.Comment: 14 pages, 8 figure

    Packing Plane Spanning Trees and Paths in Complete Geometric Graphs

    Get PDF
    We consider the following question: How many edge-disjoint plane spanning trees are contained in a complete geometric graph GKnGK_n on any set SS of nn points in general position in the plane? We show that this number is in Ω(n)\Omega(\sqrt{n}). Further, we consider variants of this problem by bounding the diameter and the degree of the trees (in particular considering spanning paths).Comment: This work was presented at the 26th Canadian Conference on Computational Geometry (CCCG 2014), Halifax, Nova Scotia, Canada, 2014. The journal version appeared in Information Processing Letters, 124 (2017), 35--4

    Packing 3-vertex paths in claw-free graphs and related topics

    Get PDF
    An L-factor of a graph G is a spanning subgraph of G whose every component is a 3-vertex path. Let v(G) be the number of vertices of G and d(G) the domination number of G. A claw is a graph with four vertices and three edges incident to the same vertex. A graph is claw-free if it has no induced subgraph isomorphic to a claw. Our results include the following. Let G be a 3-connected claw-free graph, x a vertex in G, e = xy an edge in G, and P a 3-vertex path in G. Then (a1) if v(G) = 0 mod 3, then G has an L-factor containing (avoiding) e, (a2) if v(G) = 1 mod 3, then G - x has an L-factor, (a3) if v(G) = 2 mod 3, then G - {x,y} has an L-factor, (a4) if v(G) = 0 mod 3 and G is either cubic or 4-connected, then G - P has an L-factor, (a5) if G is cubic with v(G) > 5 and E is a set of three edges in G, then G - E has an L-factor if and only if the subgraph induced by E in G is not a claw and not a triangle, (a6) if v(G) = 1 mod 3, then G - {v,e} has an L-factor for every vertex v and every edge e in G, (a7) if v(G) = 1 mod 3, then there exist a 4-vertex path N and a claw Y in G such that G - N and G - Y have L-factors, and (a8) d(G) < v(G)/3 +1 and if in addition G is not a cycle and v(G) = 1 mod 3, then d(G) < v(G)/3. We explore the relations between packing problems of a graph and its line graph to obtain some results on different types of packings. We also discuss relations between L-packing and domination problems as well as between induced L-packings and the Hadwiger conjecture. Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge disjoint packing, 3-vertex factor, 3-vertex packing, path-factor, induced packing, graph domination, graph minor, the Hadwiger conjecture.Comment: 29 page

    The maximum disjoint paths problem on multi-relations social networks

    Get PDF
    Motivated by applications to social network analysis (SNA), we study the problem of finding the maximum number of disjoint uni-color paths in an edge-colored graph. We show the NP-hardness and the approximability of the problem, and both approximation and exact algorithms are proposed. Since short paths are much more significant in SNA, we also study the length-bounded version of the problem, in which the lengths of paths are required to be upper bounded by a fixed integer ll. It is shown that the problem can be solved in polynomial time for l=3l=3 and is NP-hard for l≄4l\geq 4. We also show that the problem can be approximated with ratio (l−1)/2+Ï”(l-1)/2+\epsilon in polynomial time for any Ï”>0\epsilon >0. Particularly, for l=4l=4, we develop an efficient 2-approximation algorithm
    • 

    corecore