535 research outputs found

    Bilevel Clique Interdiction and Related Problems

    Get PDF
    I introduce a formulation of the bilevel clique interdiction problem. Interdiction, a military term, describes the removal of enemy resources. The single level clique interdiction problem describes the attempt of an attacker to interdict a maximum number of cliques. The bilevel form of the problem introduces a defender who attempts to minimize the number of cliques interdicted by the attacker. An algorithm and formulation for the bilevel clique interdiction problem has not previously been investigated. I start by introducing a formulation and a column-generation algorithm to solve the problem of bilevel interdiction of a minimum clique transversal and move forward to the creation of a delayed row-and-column generation algorithm for bilevel clique interdiction. Next, I introduce a formulation and algorithm to solve the bilevel interdiction of a maximum stable set problem. Bilevel interdiction of a maximum stable set is choosing a maximum stable set, but with a defender who is attempting to minimize the maximum stable set that can be chosen by the interdictor. I introduce a deterministic formulation and a delayed column generation algorithm. Additionally, I introduce a stochastic formulation of the problem. I solve this problem using a cross-decomposition method that involves L-shaped cuts into a master problem as well as new ``clique" cuts for the inner problem. Lastly, I define new classes of valid inequalities and facets for the clique transversal polytope. The valid inequalities come from two graph structures who have a closed form for their vertex cover number, which we use as a specific case for finding a minimum clique transversal. The first class of facets are just the maximal clique constraints of the clique transversal polytope. The next class contains an odd hole with distinct cliques on each edge of the hole. Another similar class contains an odd clique with distinct maximal cliques on the edges of one of its spanning cycles. The fourth class contains a clique with distinct maximal cliques on every edge of the initial clique, while the last class is a prism graph with distinct maximal cliques on every edge of the prism

    A branch-and-cut algorithm for the Edge Interdiction Clique Problem

    Get PDF
    Given a graph G and an interdiction budget k∈N, the Edge Interdiction Clique Problem (EICP) asks to find a subset of at most k edges to remove from G so that the size of the maximum clique, in the interdicted graph, is minimized. The EICP belongs to the family of interdiction problems with the aim of reducing the clique number of the graph. The EICP optimal solutions, called optimal interdiction policies, determine the subset of most vital edges of a graph which are crucial for preserving its clique number. We propose a new set-covering-based Integer Linear Programming (ILP) formulation for the EICP with an exponential number of constraints, called the clique-covering inequalities. We design a new branch-and-cut algorithm which is enhanced by a tailored separation procedure and by an effective heuristic initialization phase. Thanks to the new exact algorithm, we manage to solve the EICP in several sets of instances from the literature. Extensive tests show that the new exact algorithm greatly outperforms the state-of-the-art approaches for the EICP

    Parameterized Complexity of Edge Interdiction Problems

    Full text link
    We study the parameterized complexity of interdiction problems in graphs. For an optimization problem on graphs, one can formulate an interdiction problem as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In edge interdiction problems, every edge of the input graph has an interdiction cost associated with it and the interdictor interdicts the graph by modifying the edges in the graph, and the number of such modifications is constrained by the interdictor's budget. The evader then solves the given optimization problem on the modified graph. The action of the interdictor must impede the evader as much as possible. We focus on edge interdiction problems related to minimum spanning tree, maximum matching and shortest paths. These problems arise in different real world scenarios. We derive several fixed-parameter tractability and W[1]-hardness results for these interdiction problems with respect to various parameters. Next, we show close relation between interdiction problems and partial cover problems on bipartite graphs where the goal is not to cover all elements but to minimize/maximize the number of covered elements with specific number of sets. Hereby, we investigate the parameterized complexity of several partial cover problems on bipartite graphs
    corecore