185 research outputs found

    The matroid structure of representative triple sets and triple-closure computation

    Get PDF
    The closure cl (R) of a consistent set R of triples (rooted binary trees on three leaves) provides essential information about tree-like relations that are shown by any supertree that displays all triples in . In this contribution, we are concerned with representative triple sets, that is, subsets R' of R with cl (R') = cl . In this case, R' still contains all information on the tree structure implied by R, although R' might be significantly smaller. We show that representative triple sets that are minimal w.r.t. inclusion form the basis of a matroid. This in turn implies that minimal representative triple sets also have minimum cardinality. In particular, the matroid structure can be used to show that minimum representative triple sets can be computed in polynomial time with a simple greedy approach. For a given triple set R that “identifies” a tree, we provide an exact value for the cardinality of its minimum representative triple sets. In addition, we utilize the latter results to provide a novel and efficient method to compute the closure cl (R) of a consistent triple set R that improves the time complexity (R Lr 4) of the currently fastest known method proposed by Bryant and Steel (1995). In particular, if a minimum representative triple set for R is given, it can be shown that the time complexity to compute cl (R) can be improved by a factor up to R Lr . As it turns out, collections of quartets (unrooted binary trees on four leaves) do not provide a matroid structure, in general

    Matroids with nine elements

    Get PDF
    We describe the computation of a catalogue containing all matroids with up to nine elements, and present some fundamental data arising from this cataogue. Our computation confirms and extends the results obtained in the 1960s by Blackburn, Crapo and Higgs. The matroids and associated data are stored in an online database, and we give three short examples of the use of this database.Comment: 22 page

    Group actions on semimatroids

    Get PDF
    We initiate the study of group actions on (possibly infinite) semimatroids and geometric semilattices. To every such action is naturally associated an orbit-counting function, a two-variable “Tutte” polynomial and a poset which, in the representable case, coincides with the poset of connected components of intersections of the associated toric arrangement.In this structural framework we recover and strongly generalize many enumerative results about arithmetic matroids, arithmetic Tutte polynomials and toric arrangements by finding new combinatorial interpretations beyond the representable case. In particular, we thus find a class of natural examples of nonrepresentable arithmetic matroids. Moreover, we discuss actions that give rise to matroids over Z with natural combinatorial interpretations. As a stepping stone toward our results we also prove an extension of the cryptomorphism between semimatroids and geometric semilattices to the infinite case

    Show Me the Money: Dynamic Recommendations for Revenue Maximization

    Full text link
    Recommender Systems (RS) play a vital role in applications such as e-commerce and on-demand content streaming. Research on RS has mainly focused on the customer perspective, i.e., accurate prediction of user preferences and maximization of user utilities. As a result, most existing techniques are not explicitly built for revenue maximization, the primary business goal of enterprises. In this work, we explore and exploit a novel connection between RS and the profitability of a business. As recommendations can be seen as an information channel between a business and its customers, it is interesting and important to investigate how to make strategic dynamic recommendations leading to maximum possible revenue. To this end, we propose a novel \model that takes into account a variety of factors including prices, valuations, saturation effects, and competition amongst products. Under this model, we study the problem of finding revenue-maximizing recommendation strategies over a finite time horizon. We show that this problem is NP-hard, but approximation guarantees can be obtained for a slightly relaxed version, by establishing an elegant connection to matroid theory. Given the prohibitively high complexity of the approximation algorithm, we also design intelligent heuristics for the original problem. Finally, we conduct extensive experiments on two real and synthetic datasets and demonstrate the efficiency, scalability, and effectiveness our algorithms, and that they significantly outperform several intuitive baselines.Comment: Conference version published in PVLDB 7(14). To be presented in the VLDB Conference 2015, in Hawaii. This version gives a detailed submodularity proo

    Schottky Algorithms: Classical meets Tropical

    Full text link
    We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky-Igusa modular form.Comment: 17 page

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Tropicalization of classical moduli spaces

    Full text link
    The image of the complement of a hyperplane arrangement under a monomial map can be tropicalized combinatorially using matroid theory. We apply this to classical moduli spaces that are associated with complex reflection arrangements. Starting from modular curves, we visit the Segre cubic, the Igusa quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our primary example is the Burkhardt quartic, whose tropicalization is a 3-dimensional fan in 39-dimensional space. This effectuates a synthesis of concrete and abstract approaches to tropical moduli of genus 2 curves.Comment: 33 page
    • …
    corecore