164,891 research outputs found

    Surrogate modeling approximation using a mixture of experts based on EM joint estimation

    Get PDF
    An automatic method to combine several local surrogate models is presented. This method is intended to build accurate and smooth approximation of discontinuous functions that are to be used in structural optimization problems. It strongly relies on the Expectation-Maximization (EM) algorithm for Gaussian mixture models (GMM). To the end of regression, the inputs are clustered together with their output values by means of parameter estimation of the joint distribution. A local expert is then built (linear, quadratic, artificial neural network, moving least squares) on each cluster. Lastly, the local experts are combined using the Gaussian mixture model parameters found by the EM algorithm to obtain a global model. This method is tested over both mathematical test cases and an engineering optimization problem from aeronautics and is found to improve the accuracy of the approximation

    A new algorithm for finding the k shortest transport paths in dynamic stochastic networks

    Get PDF
    The static K shortest paths (KSP) problem has been resolved. In reality, however, most of the networks are actually dynamic stochastic networks. The state of the arcs and nodes are not only uncertain in dynamic stochastic networks but also interrelated. Furthermore, the cost of the arcs and nodes are subject to a certain probability distribution. The KSP problem is generally regarded as a dynamic stochastic optimization problem. The dynamic stochastic characteristics of the network and the relationships between the arcs and nodes of the network are analyzed in this paper, and the probabilistic shortest path concept is defined. The mathematical optimization model of the dynamic stochastic KSP and a genetic algorithm for solving the dynamic stochastic KSP problem are proposed. A heuristic population initialization algorithm is designed to avoid loops and dead points due to the topological characteristics of the network. The reasonable crossover and mutation operators are designed to avoid the illegal individuals according to the sparsity characteristic of the network. Results show that the proposed model and algorithm can effectively solve the dynamic stochastic KSP problem. The proposed model can also solve the network flow stochastic optimization problems in transportation, communication networks, and other networks

    Towards Constituting Mathematical Structures for Learning to Optimize

    Full text link
    Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.Comment: ICML 202

    Optimization of the long-term planning of supply chains with decaying performance

    Get PDF
    This master's thesis addresses the optimization of supply and distribution chains considering the effect that equipment aging may cause over the performance of facilities involved in the process. The decaying performance of the facilities is modeled as an exponential equation and can be either physical or economic, thus giving rise to a novel mixed integer non-linear programming (MINLP) formulation. The optimization model has been developed based on a typical chemical supply chain. Thus, the best long-term investment plan has to be determined given production nodes, their production capacity and expected evolution; aggregated consumption nodes (urban or industrial districts) and their lumped demand (and expected evolution); actual and potential distribution nodes; distances between the nodes of the network; and a time horizon. The model includes the balances in each node, a general decaying performance function, and a cost function, as well as constraints to be satisfied. Hence, the investment plan (decision variables) consists not only on the start-up and shutdown of alternative distribution facilities, but also on the sizing of the lines satisfying the flows. The model has been implemented using GAMS optimization software. Results considering a variety of scenarios have been discussed. In addition, different approaches to the starting point for the model have been compared, showing the importance of initializing the optimization algorithm. The capabilities of the proposed approach have been tested through its application to two case studies: a natural gas network with physical decaying performance and an electricity distribution network with economic decaying performance. Each case study is solved with a different procedure to obtain results. Results demonstrate that overlooking the effect of equipment aging can lead to infeasible (for physical decaying performance) or unrealistic (for economic decaying performance) solutions in practice and show how the proposed model allows overcoming such limitations thus becoming a practical tool to support the decision-making process in the distribution secto
    • …
    corecore