29,677 research outputs found

    Towards an open cloud marketplace: vision and first steps

    Full text link
    As one of the most promising, emerging concepts in Information Technology (IT), cloud computing is transforming how IT is consumed and managed; yielding improved cost efficiencies, and delivering flexible, on-demand scalability by reducing computing infrastructures, platforms, and services to commodities acquired and paid-for on-demand through a set of cloud providers. Today, the transition of cloud computing from a subject of research and innovation to a critical infrastructure is proceeding at an incredibly fast pace. A potentially dangerous consequence of this speedy transition to practice is the premature adoption, and ossification, of the models, technologies, and standards underlying this critical infrastructure. This state of affairs is exacerbated by the fact that innovative research on production-scale platforms is becoming the purview of a small number of public cloud providers. Specifically, the academic research communities are effectively excluded from the opportunity to contribute meaningfully to the evolution not to mention innovation and healthy mutation of cloud computing technologies. As the dependence on our society and economy on cloud computing increases, so does the realization that the academic research community cannot be shut out from contributing to the design and evolution of this critical infrastructure. In this article we provide an alternative vision that of an Open Cloud eXchange (OCX) a public cloud marketplace, where many stakeholders, rather than just a single cloud provider, participate in implementing and operating the cloud, thus creating an ecosystem that will bring the innovation of a broader community to bear on a much healthier and more efficient cloud marketplace

    Learning users' interests by quality classification in market-based recommender systems

    No full text
    Recommender systems are widely used to cope with the problem of information overload and, to date, many recommendation methods have been developed. However, no one technique is best for all users in all situations. To combat this, we have previously developed a market-based recommender system that allows multiple agents (each representing a different recommendation method or system) to compete with one another to present their best recommendations to the user. In our system, the marketplace encourages good recommendations by rewarding the corresponding agents who supplied them according to the users’ ratings of their suggestions. Moreover, we have theoretically shown how our system incentivises the agents to bid in a manner that ensures only the best recommendations are presented. To do this effectively in practice, however, each agent needs to be able to classify its recommendations into different internal quality levels, learn the users’ interests for these different levels, and then adapt its bidding behaviour for the various levels accordingly. To this end, in this paper we develop a reinforcement learning and Boltzmann exploration strategy that the recommending agents can exploit for these tasks. We then demonstrate that this strategy does indeed help the agents to effectively obtain information about the users’ interests which, in turn, speeds up the market convergence and enables the system to rapidly highlight the best recommendations

    User evaluation of a market-based recommender system

    No full text
    Recommender systems have been developed for a wide variety of applications (ranging from books, to holidays, to web pages). These systems have used a number of different approaches, since no one technique is best for all users in all situations. Given this, we believe that to be effective, systems should incorporate a wide variety of such techniques and then some form of overarching framework should be put in place to coordinate them so that only the best recommendations (from whatever source) are presented to the user. To this end, in our previous work, we detailed a market-based approach in which various recommender agents competed with one another to present their recommendations to the user. We showed through theoretical analysis and empirical evaluation with simulated users that an appropriately designed marketplace should be able to provide effective coordination. Building on this, we now report on the development of this multi-agent system and its evaluation with real users. Specifically, we show that our system is capable of consistently giving high quality recommendations, that the best recommendations that could be put forward are actually put forward, and that the combination of recommenders performs better than any constituent recommende

    Using Open Stack for an Open Cloud Exchange(OCX)

    Full text link
    We are developing a new public cloud, the Massachusetts Open Cloud (MOC) based on the model of an Open Cloud eXchange (OCX). We discuss in this paper the vision of an OCX and how we intend to realize it using the OpenStack open-source cloud platform in the MOC. A limited form of an OCX can be achieved today by layering new services on top of OpenStack. We have performed an analysis of OpenStack to determine the changes needed in order to fully realize the OCX model. We describe these proposed changes, which although significant and requiring broad community involvement will provide functionality of value to both existing single-provider clouds as well as future multi-provider ones

    A Marketplace for Efficient and Secure Caching for IoT Applications in 5G Networks

    Get PDF
    As the communication industry is progressing towards fifth generation (5G) of cellular networks, the traffic it carries is also shifting from high data rate traffic from cellular users to a mixture of high data rate and low data rate traffic from Internet of Things (IoT) applications. Moreover, the need to efficiently access Internet data is also increasing across 5G networks. Caching contents at the network edge is considered as a promising approach to reduce the delivery time. In this paper, we propose a marketplace for providing a number of caching options for a broad range of applications. In addition, we propose a security scheme to secure the caching contents with a simultaneous potential of reducing the duplicate contents from the caching server by dividing a file into smaller chunks. We model different caching scenarios in NS-3 and present the performance evaluation of our proposal in terms of latency and throughput gains for various chunk sizes

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore