2,831 research outputs found

    Refractive Structure-From-Motion Through a Flat Refractive Interface

    Get PDF
    Recovering 3D scene geometry from underwater images involves the Refractive Structure-from-Motion (RSfM) problem, where the image distortions caused by light refraction at the interface between different propagation media invalidates the single view point assumption. Direct use of the pinhole camera model in RSfM leads to inaccurate camera pose estimation and consequently drift. RSfM methods have been thoroughly studied for the case of a thick glass interface that assumes two refractive interfaces between the camera and the viewed scene. On the other hand, when the camera lens is in direct contact with the water, there is only one refractive interface. By explicitly considering a refractive interface, we develop a succinct derivation of the refractive fundamental matrix in the form of the generalised epipolar constraint for an axial camera. We use the refractive fundamental matrix to refine initial pose estimates obtained by assuming the pinhole model. This strategy allows us to robustly estimate underwater camera poses, where other methods suffer from poor noise-sensitivity. We also formulate a new four view constraint enforcing camera pose consistency along a video which leads us to a novel RSfM framework. For validation we use synthetic data to show the numerical properties of our method and we provide results on real data to demonstrate performance within laboratory settings and for applications in endoscopy

    High-contrast spectroscopy of SCR J1845-6357 B

    Full text link
    Spectral characterization of sub-stellar companions is essential to understand their composition and formation processes. However, the large contrast ratio of the brightness of each object to that of its parent star limits our ability to extract a clean spectrum, free from any significant contribution from the star. During the development of the long slit spectroscopy (LSS) mode of IRDIS, the dual-band imager and spectrograph of SPHERE, we proposed a data analysis method to estimate and remove the contributions of the stellar spectrum. This method has never been tested on real data because of the lack of instrumentation capable of combining adaptive optics (AO), coronagraphy, and LSS. Nonetheless, a similar attenuation of the star can be obtained using a particular observing configuration. Test data were acquired using the AO-assisted spectrograph VLT/NACO. We obtained new J- and H-band spectra of SCR J1845-6357 B, a T6 companion to a nearby (3.85\pm0.02 pc) M8 star. This system is a well-suited benchmark as it is relatively wide (~1.0") with a modest contrast ratio (~4 mag), and a previously published JHK spectrum is available for reference. We demonstrate that (1) our method is efficient at estimating and removing the stellar contribution, (2) it allows to properly recover the spectral shape of the companion, and (3) it is essential to obtain an unbiased estimation of physical parameters. We also show that the slit configuration associated with this method allows us to use long exposure times with high throughput producing high signal-to-noise ratio data. However, the signal of the companion gets over-subtracted, particularly in our J-band data, compelling us to use a fake companion spectrum to estimate and compensate for the loss of flux. Finally, we report a new astrometric measurement of the position of the companion (sep = 0.817", PA = 227.92 deg).Comment: 11 pages, 8 figures, 4 tables. Accepted for publication in A&

    Investigations on transverse beam profile measurements with high dynamic range

    Get PDF
    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the drift chamber and thereby activate the beam pipe, which makes work on the accelerator costly and time consuming. A well-established technique for transverse beam profile measurements is the observation of synchrotron radiation, optical transition radiation or the like. A particular challenge, however, is the detection of particles in the tail regions of the beam distribution in close proximity of the very intense beam core. Results from laboratory measurements on two different devices are presented that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system which has an intrinsically high dynamic range due to its unique pixel design, and a flexible masking technique based on a DMD micro mirror array which allows for a fast mask generation to blank out the central core

    Cloud geometry for passive remote sensing

    Get PDF
    An important cause for disagreements between current climate models is lack of understanding of cloud processes. In order to test and improve the assumptions of such models, detailed and large scale observations of clouds are necessary. Passive remote sensing methods are well-established to obtain cloud properties over a large observation area in a short period of time. In case of the visible to near infrared part of the electromagnetic spectrum, a quick measurement process is achieved by using the sun as high-intensity light source to illuminate a cloud scene and by taking simultaneous measurements on all pixels of an imaging sensor. As the sun as light source can not be controlled, it is not possible to measure the time light travels from source to cloud to sensor, which is how active remote sensing determines distance information. But active light sources do not provide enough radiant energy to illuminate a large scene, which would be required to observe it in an instance. Thus passive imaging remains an important remote sensing method. Distance information and accordingly cloud surface location information is nonetheless crucial information: cloud fraction and cloud optical thickness largely determines the cloud radiative effect and cloud height primarily influences a cloud's influence on the Earth's thermal radiation budget. In combination with ever increasing spatial resolution of passive remote sensing methods, accurate cloud surface location information becomes more important, as the largest source of retrieval uncertainties at this spatial scale, influences of 3D radiative transfer effects, can be reduced using this information. This work shows how the missing location information is derived from passive remote sensing. Using all sensors of the improved hyperspectral and polarization resolving imaging system specMACS, a unified dataset, including classical hyperspectral measurements as well as cloud surface location information and derived properties, is created. This thesis shows how RGB cameras are used to accurately derive cloud surface geometry using stereo techniques, complementing the passive remote sensing of cloud microphysics on board the German High-Altitude Long-Range research aircraft (HALO). Measured surface locations are processed into a connected surface representation, which in turn is used to assign height and location to other passive remote sensing observations. Furthermore, cloud surface orientation and a geometric shadow mask are derived, supplementing microphysical retrieval methods. The final system is able to accurately map visible cloud surfaces while flying above cloud fields. The impact of the new geometry information on microphysical retrieval uncertainty is studied using theoretical radiative transfer simulations and measurements. It is found that in some cases, information about surface orientation allows to improve classical cloud microphysical retrieval methods. Furthermore, surface information helps to identify measurement regions where a good microphysical retrieval quality is expected. By excluding likely biased regions, the overall microphysical retrieval uncertainty can be reduced. Additionally, using the same instrument payload and based on knowledge of the 3D cloud surface, new approaches for the retrieval of cloud droplet radius exploiting measurements of parts of the polarized angular scattering phase function become possible. The necessary setup and improvements of the hyperspectral and polarization resolving measurement system specMACS, which have been developed throughout four airborne field campaigns using the HALO research aircraft are introduced in this thesis.Ein wichtiger Grund für Unterschiede zwischen aktuellen Klimamodellen sind nicht ausreichend verstandene Wolkenprozesse. Um die zugrundeliegenden Annahmen dieser Modelle zu testen und zu verbessern ist es notwendig detaillierte und großskalige Beobachtungen von Wolken durch zu führen. Methoden der passiven Fernerkundung haben sich für die schnelle Erfassung von Wolkeneigenschaften in einem großen Beobachtungsgebiet etabliert. Für den sichtbaren bis nahinfraroten Bereich des elektromagnetischen Spektrums kann eine schnelle Messung erreicht werden, in dem die Sonne als starke Lichtquelle genutzt wird und die Wolkenszene durch simultane Messung über alle Pixel eines Bildsensors erfasst wird. Da die Sonne als Lichtquelle nicht gesteuert werden kann, ist es nicht möglich die Zeit zu messen die von einem Lichtstrahl für den Weg von der Quelle zur Wolke und zum Sensor benötigt wird, so wie es bei aktiven Verfahren zur Distanzbestimmung üblich ist. Allerdings können aktive Lichtquellen nicht genügend Energie bereitstellen um eine große Szene gut genug zu beleuchten um diese Szene in einem kurzen Augenblick vollständig zu erfassen. Aus diesem Grund werden passive bildgebende Verfahren weiterhin eine wichtige Methode zur Fernerkundung bleiben. Trotzdem ist der Abstand zur beobachteten Wolke und damit der Ort der Wolke eine entscheidende Information: Wolkenbedeckungsgrad und die optische Dicke einer Wolke bestimmen einen Großteil des Strahlungseffektes von Wolken und die Höhe der Wolken ist der Haupteinflussfaktor von Wolken auf die thermische Strahlungsbilanz der Erde. Einhergehend mit der weiterhin zunehmenden Auflösung von passiven Fernerkundungsmethoden werden genaue Informationen über den Ort von Wolkenoberflächen immer wichtiger. Dreidimensionale Strahlungstransporteffekte werden auf kleineren räumlichen Skalen zum dominierenden Faktor für Fehler in Messverfahren für Wolkenmikrophysik. Dieser Einfluss auf die Messverfahren kann durch die Nutzung von Informationen über die Lage der Wolken reduziert und die Ergebnisse somit verbessert werden. Diese Arbeit zeigt, wie die fehlenden Ortsinformationen aus passiven Fernerkundungsmethoden gewonnen werden können. Damit kann ein vereinheitlichter Datensatz aller Sensoren des verbesserten specMACS-Systems für hyperspektrale und polarisationsaufgelöste Bilderfassung erstellt werden, in dem außer den gemessenen Strahlungsdichten auch die Positionen der beobachteten Wolkenoberflächen und daraus abgeleitete Größen enthalten sind. In dieser Arbeit wird gezeigt, wie RGB-Kameras genutzt werden, um mit Hilfe stereographischer Techniken die Geometrie der beobachteten Wolken ab zu leiten und so die Möglichkeiten zur passiven Fernerkundung auf dem Forschungsflugzeug HALO zu erweitern. Aus den so gemessenen Positionen der Wolkenoberflächen wird eine geschlossene Darstellung der Wolkenoberflächen berechnet. Dies ermöglicht es die Daten aus anderen passiven Fernerkundungsmethoden um Höhe und Ort der Messung zu erweitern. Außerdem ist es so möglich die Orientierung der Wolkenoberflächen und eine Schattenmaske auf Grund der nun bekannten Beobachtungsgeometrie zu berechnen. Das fertige System ist in der Lage, die sichtbaren Wolkenoberflächen aus Daten von einem Überflug zu rekonstruieren. Mit Hilfe theoretischer Strahlungstransportsimulationen und Messungen wird der Einfluss der neu gewonnenen Informationen auf bestehende Rekonstruktionsmethoden für Wolkenmikrophysik untersucht. In manchen Fällen helfen die neu gewonnenen Informationen direkt die Ergebnisse dieser Methoden zu verbessern und in jedem Fall ermöglichen es die Positionsdaten Bereiche zu identifizieren für die bekannt ist, dass bisherige Rekonstruktionsmethoden nicht funktionieren. Durch Ausschluss solcher Bereiche wird der Gesamtfehler von Mirkophysikrekonstruktionen weiterhin reduziert. Das aktuelle specMACS System ermöglicht auch polarisationsaufgelöste Messungen, wodurch eine sehr genaue Bestimmung der Wolkentropfengrößen möglich wird. Die nun verfügbaren Positionsdaten der Wolkenoberflächen helfen die Genauigkeit dieses Verfahrens deutlich zu verbessern. Die notwendigen Auf- und Umbauten des hyperspektralen und polarisationsauflösenden Messsystems specMACS, die während vier Flugzeuggestützer Messkampagnen auf dem Forschungsflugzeug HALO entwickelt wurden sind in dieser Arbeit beschrieben

    The Effects of Gravity on Self-Motion Perception

    Get PDF
    Gravity is the most pervasive force that we encounter. For instance, we observe a variety of objects being accelerated toward the Earth by gravity, but we also experience these forces when we are simply stationaryas gravity is a constant accelerationor when we are ourselves in motion, such as when we are locomoting on foot, driving a vehicle, jumping or skiing. It follows that our ability to successfully navigate our environment must somehow take into account the effects of gravity on our body's motion-detecting sensesa dynamic relationship which changes with self-motion and self-orientation. The goal of this dissertation was to investigate how body orientation relative to gravity influences visual-vestibular interactions in visually-induced perception of self-motion (i.e., vection). Specifically, I examined this relationship by placing observers in varied postures and presenting visual displays simulating forward/backward self-motion with vertical/horizontal viewpoint oscillation, that mimics components produced by head-movements in real self-motion. I found that tilting observers reduced vection and the two viewpoint oscillations similarly enhanced vection, suggesting that current postural and oscillation-based vection findings are best explained by ecology. I also examined the influence of scene structure and alignment of the body and visual motion relative to gravity on vection. Observers in different postures viewed simulated translational self-motion displays consisting of either a single rigid structure or dots. The experimental data showed that vection depended on both posture and the perceived interpretation of the visual scene, indicating that self-motion perception is modulated by high-order cognitive processes. I also found that observers reported illusory tilt of the stimulus when they were not upright. I investigated these observer reports of a posture-dependent perceived stimulus tilt by presenting upright and tilted observers with static and motion stimuli that were tilted from the graviational vertical. Postural-dependent tilt effects were found for both these stimuli and were greater for motion experienced as self-motion than external motion. Taken together, the results of this dissertation demonstrate that our perception of self-motion is influenced by gravity, and by prior experiences and internal mental representations of our visual world
    corecore