1,005 research outputs found

    Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem

    Full text link
    In recent years, there has been much interest in phase transitions of combinatorial problems. Phase transitions have been successfully used to analyze combinatorial optimization problems, characterize their typical-case features and locate the hardest problem instances. In this paper, we study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard combinatorial optimization problem that has many real-world applications. Using random instances of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show that many properties of the problem, including the optimal tour cost and backbone size, experience sharp transitions as the precision of intercity distances increases across a critical value. Our experimental results on the costs of the ATSP tours and assignment problem agree with the theoretical result that the asymptotic cost of assignment problem is pi ^2 /6 the number of cities goes to infinity. In addition, we show that the average computational cost of the well-known branch-and-bound subtour elimination algorithm for the problem also exhibits a thrashing behavior, transitioning from easy to difficult as the distance precision increases. These results answer positively an open question regarding the existence of phase transitions in the ATSP, and provide guidance on how difficult ATSP problem instances should be generated

    A near-optimal approximation algorithm for Asymmetric TSP on embedded graphs

    Full text link
    We present a near-optimal polynomial-time approximation algorithm for the asymmetric traveling salesman problem for graphs of bounded orientable or non-orientable genus. Our algorithm achieves an approximation factor of O(f(g)) on graphs with genus g, where f(n) is the best approximation factor achievable in polynomial time on arbitrary n-vertex graphs. In particular, the O(log(n)/loglog(n))-approximation algorithm for general graphs by Asadpour et al. [SODA 2010] immediately implies an O(log(g)/loglog(g))-approximation algorithm for genus-g graphs. Our result improves the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi [SODA 2011], which applies only to graphs with orientable genus g; ours is the first approximation algorithm for graphs with bounded non-orientable genus. Moreover, using recent progress on approximating the genus of a graph, our O(log(g) / loglog(g))-approximation can be implemented even without an embedding when the input graph has bounded degree. In contrast, the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi requires a genus-g embedding as part of the input. Finally, our techniques lead to a O(1)-approximation algorithm for ATSP on graphs of genus g, with running time 2^O(g)*n^O(1)

    Approximation Algorithms for the Asymmetric Traveling Salesman Problem : Describing two recent methods

    Full text link
    The paper provides a description of the two recent approximation algorithms for the Asymmetric Traveling Salesman Problem, giving the intuitive description of the works of Feige-Singh[1] and Asadpour et.al\ [2].\newline [1] improves the previous O(logn)O(\log n) approximation algorithm, by improving the constant from 0.84 to 0.66 and modifying the work of Kaplan et. al\ [3] and also shows an efficient reduction from ATSPP to ATSP. Combining both the results, they finally establish an approximation ratio of (43+ϵ)logn\left(\frac{4}{3}+\epsilon \right)\log n for ATSPP,\ considering a small ϵ>0\epsilon>0,\ improving the work of Chekuri and Pal.[4]\newline Asadpour et.al, in their seminal work\ [2], gives an O(lognloglogn)O\left(\frac{\log n}{\log \log n}\right) randomized algorithm for the ATSP, by symmetrizing and modifying the solution of the Held-Karp relaxation problem and then proving an exponential family distribution for probabilistically constructing a maximum entropy spanning tree from a spanning tree polytope and then finally defining the thin-ness property and transforming a thin spanning tree into an Eulerian walk.\ The optimization methods used in\ [2] are quite elegant and the approximation ratio could further be improved, by manipulating the thin-ness of the cuts.Comment: 12 page

    New Inapproximability Bounds for TSP

    Full text link
    In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results

    Approximability of Connected Factors

    Get PDF
    Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte's reduction to the matching problem. By the same reduction, it is easy to find a minimal or maximal d-factor of a graph. However, if we require that the d-factor is connected, these problems become NP-hard - finding a minimal connected 2-factor is just the traveling salesman problem (TSP). Given a complete graph with edge weights that satisfy the triangle inequality, we consider the problem of finding a minimal connected dd-factor. We give a 3-approximation for all dd and improve this to an (r+1)-approximation for even d, where r is the approximation ratio of the TSP. This yields a 2.5-approximation for even d. The same algorithm yields an (r+1)-approximation for the directed version of the problem, where r is the approximation ratio of the asymmetric TSP. We also show that none of these minimization problems can be approximated better than the corresponding TSP. Finally, for the decision problem of deciding whether a given graph contains a connected d-factor, we extend known hardness results.Comment: To appear in the proceedings of WAOA 201

    Modelli, English Version

    Get PDF

    ILP Models

    Get PDF

    Multiple local neighbourhood search for extremal optimisation

    Get PDF
    corecore