195 research outputs found

    The low-rank decomposition of correlation-enhanced superpixels for video segmentation

    Get PDF
    Low-rank decomposition (LRD) is an effective scheme to explore the affinity among superpixels in the image and video segmentation. However, the superpixel feature collected based on colour, shape, and texture may be rough, incompatible, and even conflicting if multiple features extracted in various manners are vectored and stacked straight together. It poses poor correlation, inconsistence on intra-category superpixels, and similarities on inter-category superpixels. This paper proposes a correlation-enhanced superpixel for video segmentation in the framework of LRD. Our algorithm mainly consists of two steps, feature analysis to establish the initial affinity among superpixels, followed by construction of a correlation-enhanced superpixel. This work is very helpful to perform LRD effectively and find the affinity accurately and quickly. Experiments conducted on datasets validate the proposed method. Comparisons with the state-of-the-art algorithms show higher speed and more precise in video segmentation

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end

    A brief survey of visual saliency detection

    Get PDF

    SpaSSA: superpixelwise adaptive SSA for unsupervised spatial-spectral feature extraction in hyperspectral image.

    Get PDF
    Singular spectral analysis (SSA) has recently been successfully applied to feature extraction in hyperspectral image (HSI), including conventional (1-D) SSA in spectral domain and 2-D SSA in spatial domain. However, there are some drawbacks, such as sensitivity to the window size, high computational complexity under a large window, and failing to extract joint spectral-spatial features. To tackle these issues, in this article, we propose superpixelwise adaptive SSA (SpaSSA), that is superpixelwise adaptive SSA for exploiting local spatial information of HSI. The extraction of local (instead of global) features, particularly in HSI, can be more effective for characterizing the objects within an image. In SpaSSA, conventional SSA and 2-D SSA are combined and adaptively applied to each superpixel derived from an oversegmented HSI. According to the size of the derived superpixels, either SSA or 2-D singular spectrum analysis (2D-SSA) is adaptively applied for feature extraction, where the embedding window in 2D-SSA is also adaptive to the size of the superpixel. Experimental results on the three datasets have shown that the proposed SpaSSA outperforms both SSA and 2D-SSA in terms of classification accuracy and computational complexity. By combining SpaSSA with the principal component analysis (SpaSSA-PCA), the accuracy of land-cover analysis can be further improved, outperforming several state-of-the-art approaches

    SPSIM: A Superpixel-Based Similarity Index for Full-Reference Image Quality Assessment

    Get PDF
    Full-reference image quality assessment algorithms usually perform comparisons of features extracted from square patches. These patches do not have any visual meanings. On the contrary, a superpixel is a set of image pixels that share similar visual characteristics and is thus perceptually meaningful. Features from superpixels may improve the performance of image quality assessment. Inspired by this, we propose a new superpixel-based similarity index by extracting perceptually meaningful features and revising similarity measures. The proposed method evaluates image quality on the basis of three measurements, namely, superpixel luminance similarity, superpixel chrominance similarity, and pixel gradient similarity. The first two measurements assess the overall visual impression on local images. The third measurement quantifies structural variations. The impact of superpixel-based regional gradient consistency on image quality is also analyzed. Distorted images showing high regional gradient consistency with the corresponding reference images are visually appreciated. Therefore, the three measurements are further revised by incorporating the regional gradient consistency into their computations. A weighting function that indicates superpixel-based texture complexity is utilized in the pooling stage to obtain the final quality score. Experiments on several benchmark databases demonstrate that the proposed method is competitive with the state-of-the-art metrics
    • …
    corecore