7,092 research outputs found

    NASA Thesaurus. Volume 2: Access vocabulary

    Get PDF
    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus

    NASA Thesaurus. Volume 1: Hierarchical listing

    Get PDF
    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary

    Analysis of 3D printed NDFeB polymer bonded and organic based magnets

    Get PDF
    Additive manufacturing (AM), or commonly known as 3D printing, has introduced to the manufacturing and commercial sectors novel ways of reducing production times, decreasing material waste, and enabling end products with multi-material configuration and complex geometric designs. From industrial scale to customer-based printers, AM has revolutionized the approach to manufacturing, prototyping, and designing in the field of medical, automotive, aerospace, biomedical, electronics and customizable products. Recently, additive manufacturing has crossed over to the area of applications in magnetism due to the economic push for the miniaturization of electronic and mechanical devices, reduction in production costs and material & design flexibility. The goal of this research is to add to the groundwork for the additive manufacturing with NdFeB bonded and organic based magnetic materials. Development of 3D printing methods will open doors to new applications in magnetism and will lead to significant opportunities in its applications. NdFeB bonded composites and organic based magnetic materials will be converted to feedstock and implemented into the 3D printer to fabricate magnetic objects with complex and unique shapes. The molecular, electronic and structural properties of these materials will be characterized using various analytical and physical methods and the results will be compared

    NASA thesaurus. Volume 1: Hierarchical Listing

    Get PDF
    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions

    A pulsed-Laser Rb atomic frequency standard for GNSS applications

    Get PDF
    We present the results of 10 years of research related to the development of a Rubidium vapor cell clock based on the principle of pulsed optical pumping (POP). Since in the pulsed approach, the clock operation phases take place at different times, this technique demonstrated to be very effective in curing several issues affecting traditional Rb clocks working in a continuous regime, like light shift, with a consequent improvement of the frequency stability performances. We describe two laboratory prototypes of POP clock, both developed at INRIM. The first one achieved the best results in terms of frequency stability: an Allan deviation of σy(τ) = 1.7 × 10−13 τ−1/2, being τ the averaging time, has been measured. In the prospect of a space application, we show preliminary results obtained with a second more recent prototype based on a loaded cavity-cell arrangement. This clock has a reduced size and exhibited an Allan deviation of σy(τ) = 6 × 10−13 τ−1/2, still a remarkable result for a vapor cell device. In parallel, an ongoing activity performed in collaboration with Leonardo S.p.A. and aimed at developing an engineered space prototype of the POP clock is finally mentioned. Possible issues related to space implementation are also briefly discussed. On the basis of the achieved results, the POP clock represents a promising technology for future GNSSs

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin
    corecore