515 research outputs found

    An advection-robust Hybrid High-Order method for the Oseen problem

    Get PDF
    In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer k≥0k\ge 0, the discrete velocity unknowns are vector-valued polynomials of total degree ≤k\le k on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree ≤k\le k on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree ≤(k+1)\le(k+1), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element TT of diameter hTh_T contributes to the discretization error with an O(hTk+1)\mathcal{O}(h_T^{k+1})-term in the diffusion-dominated regime, an O(hTk+12)\mathcal{O}(h_T^{k+\frac12})-term in the advection-dominated regime, and scales with intermediate powers of hTh_T in between. Numerical results complete the exposition

    A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations

    Get PDF
    We introduce a space–time discontinuous Galerkin (DG) finite element method for the incompressible Navier–Stokes equations. Our formulation can be made arbitrarily high order accurate in both space and time and can be directly applied to deforming domains. Different stabilizing approaches are discussed which ensure stability of the method. A numerical study is performed to compare the effect of the stabilizing approaches, to show the method’s robustness on deforming domains and to investigate the behavior of the convergence rates of the solution. Recently we introduced a space–time hybridizable DG (HDG) method for incompressible flows [S. Rhebergen, B. Cockburn, A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys. 231 (2012) 4185–4204]. We will compare numerical results of the space–time DG and space–time HDG methods. This constitutes the first comparison between DG and HDG methods

    Local projection finite element stabilization for the generalized Stokes problem

    Get PDF
    We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties. An important feature of the method is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system of equations. Although stability of the method has been established, for the homogeneous Stokes equations, the proof given here is based on the existence of a special interpolant with additional orthogonal property with respect to the projection space. This, makes it a lot simpler and more attractive. The resulting stabilized method is shown to lead to optimal rates of convergence for both velocity and pressure approximations

    A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations

    Get PDF
    We present a class of discontinuous Galerkin methods for the incompressible Navier-Stokes equations yielding exactly divergence-free solutions. Exact incompressibility is achieved by using divergence-conforming velocity spaces for the approximation of the velocities. The resulting methods are locally conservative, energy-stable, and optimally convergent. We present a set of numerical tests that confirm these properties. The results of this note naturally expand the work in a previous publication on Navier-Stokes equation

    A local projection stabilization/continuous Galerkin--Petrov method for incompressible flow problems

    Get PDF
    The local projection stabilization (LPS) method in space is consid-ered to approximate the evolutionary Oseen equations. Optimal error bounds independent of the viscosity parameter are obtained in the continuous-in-time case for the approximations of both velocity and pressure. In addition, the fully discrete case in combination with higher order continuous Galerkin--Petrov (cGP) methods is studied. Error estimates of order k + 1 are proved, where k denotes the polynomial degree in time, assuming that the convective term is time-independent. Numerical results show that the predicted order is also achieved in the general case of time-dependent convective terms

    Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present optimal preconditioners for a recently introduced hybridized discontinuous Galerkin finite element discretization of the Stokes equations. Typical of hybridized discontinuous Galerkin methods, the method has degrees-of-freedom that can be eliminated locally (cell-wise), thereby significantly reducing the size of the global problem. Although the linear system becomes more complex to analyze after static condensation of these element degrees-of-freedom, the pressure Schur complement of the original and reduced problem are the same. Using this fact, we prove spectral equivalence of this Schur complement to two simple matrices, which is then used to formulate optimal preconditioners for the statically condensed problem. Numerical simulations in two and three spatial dimensions demonstrate the good performance of the proposed preconditioners
    • …
    corecore