706 research outputs found

    Modeling and supervisory control design for a combined cycle power plant

    Get PDF
    The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controller’s scheme

    Model based predictive control of a drum-type boiler

    Get PDF
    High fuel costs, stringent safety and pollution standards and the need to increase plant life-time have all driven the search for better boiler control. Traditional PID control cannot achieve the best possible results as it does not account for the strong interactions between the controlled variables. Much work has been done in the area of optimal control, but the improvements gained in performance have been lost to some extent by the difficulties involved in tuning such controllers. A linear predictive controller is presented in this paper, which is both fully multivariable and computationally efficient. It is also easy to tune as the controller tuning parameters are physically meaningful

    Detailed model for robust feedback design of main steam temperatures in coal fired boilers

    Get PDF
    Main steam temperatures play a significant role in large coal fired power plant operation. Ideally, main steam temperatures should be accurately controlled to protect the thick wall components against long term overheating and thermal stress while meeting the design conditions at the steam turbine inlet. Although high steam temperatures are beneficial for thermal efficiency, it accelerates creep damage in high temperature components which is detrimental to the life of components. Alternatively, low steam temperatures increase the moisture content at the last stage blades of the turbine, causing the blades to deteriorate and fail. Control of the outlet steam temperature according to design conditions at variable loads is maintained via a balance between heat input (flue gas temperature and mass flow rate), evaporator outlet steam mass flow and spray water. The present control philosophy accuracy of main steam temperatures at an Eskom coal fired power plant was evaluated and compared to the latest technology and control strategies. Improving and optimizing steam temperature controls ensures design efficiency while maintaining long term plant health. The level of spatial discretization applied in simplifying the real boiler for modelling purposes was approached at a relatively high level. The intention was to model normal operating conditions and certain transients such as variable heat input and load changes to see its effect on steam temperatures and to be able to evaluate the performance of different temperature control techniques. The main outcome of this project was to design a robust control system for a dynamic model of the boiler using sets of low order linear models to account for uncertainty. The main concepts, models and theories used in the development of this dissertation include: 1) A detailed thermo-fluid model developed using Flownex to have high fidelity models of the process under varying operating conditions. This model was used to test and evaluate the robust controller design. 2) System Identification in Matlab to construct mathematical models of dynamic systems from measured inputoutput data and identify linear continuous time transfer functions under all operating conditions [1]. 3) Quantitative Feedback Theory (QFT) to design controllers for an attemperator control system at various onload operating conditions. This design was used understand the engineering requirements and seeks to design fixed gain controllers that will give desired performance under all operating conditions. 4) The design of a valve position controller to increase the heat uptake in a convective pass, thereby improving efficiency: Excessive attemperation in the superheater passes is generally associated with high flue gas temperatures which decrease thermal efficiency. Therefore, robust control of the attemperation system leads to an increase in heat uptake between the flue gas and steam in the boiler, resulting in a reduction in the flue gas temperature leaving the boiler, thus improving efficiency. The robust QFT controllers were set up using the valve position control technique and were used to confirm the improvement of control performance. The theories mentioned above were used to understand the control performance under varying plant conditions using a standard cascaded arrangement. It incorporated robust control design and engineering requirements such as bandwidth, plant life, spray water and thermodynamic efficiency. The control effort allocated to each superheaterattemperator subsystem in the convective pass was designed as a multi-loop problem

    Active Disturbance Rejection Control of Thermal Power Unit Coordinated System based on Frequency Domain Analysis

    Get PDF
    For the multi-input and multi-output, strong-coupling nonlinear features of coordinated system for thermal power unit, it is difficult for traditional PID coordinated control scheme to meet the power grid demand which often participates in peak regulation and frequency modulation. In this paper, Inverse Nyquist array is employed to carry out frequency domain analysis of the plant model. Then Pseudo diagonalization is used to design the static decoupling compensation matrix of the system. Above on these, the linear active disturbance rejection controller of every channel in coordinated system can be designed repectively. Dynamic coupling and system unknown parts are observed by extended state observer of ADRC and is compensated to the system in time. The simulation tests show that the disturbance rejection results of the load and the main steam pressure for the coordinated control system under LADRC is better than that of PID control

    Dynamic Model Construction and Control System Design for Canadian Supercritical Water-cooled Reactors

    Get PDF
    The dynamic characteristics of Canadian Supercritical Water-cooled Reactor (SCWR) are significantly different from those of CANDU reactors due to the supercritical water coolant and the once-through direct cycle coolant system. Therefore, it is necessary to study its dynamic behaviour and further design adequate control system. An accurate dynamic model is needed to describe the dynamic behaviour. Moving boundary method is applied to improve numerical accuracy and stability. In the model construction process, three regions have been considered depending on bulk and wall temperature being higher or lower than the pseudo-critical temperature. Benefits of adopting moving boundary method are illustrated in comparison with the fixed boundary method. The model is validated with both steady-state and transient simulation and can accurately predict the dynamic behaviour of the Canadian SCWR. A linear dynamic model, for dynamic analysis and control system design, is obtained through linearization on the nonlinear dynamic models derived from conservation equations. The linearized dynamic models are validated against the full order nonlinear models in both time domain and frequency domain. The open-loop dynamics are also investigated through extensive simulations. Cross-coupling analysis among inputs and outputs is examined using Relative Gain Array (RGA) and Nyquist plots, from which adequate input-output pairings are identified. Cross-coupling at different operating conditions are also evaluated to illustrate the nonlinearities. It can be concluded that the Canadian SCWR is a Multiple Input and Multiple Output (MIMO) system with strong cross-coupling and a high degree of nonlinearity. Due to the existence of strong cross-coupling, the Direct Nyquist Array (DNA) method is used to decouple the system into a diagonal dominance form via a pre-compensator. Three Single Input and Single Output (SISO) compensators are synthesized to the pre-compensated system in the frequency domain. The temperature variation induced by the disturbances at the reactor power and pressure can be significantly reduced. To deal with the nonlinearities, a gain scheduling control strategy is adopted. Different set of controllers are used at different load conditions. The control strategy is evaluated under various operating scenarios. It is shown that gain scheduling control can successfully achieve satisfactory performance for different operating conditions

    The One-pass Smoke Tube Marine Boiler-Limits of Performance

    Get PDF

    Control of a train of high purity distillation columns for efficient production of 13C isotopes

    Get PDF
    It is well-known that high-purity distillation columns are difficult to control due to their ill-conditioned and strongly nonlinear behaviour. The fact that these processes are operated over a wide range of feed compositions and flow rates makes the control design even more challenging. This paper proposes the most suitable control strategies applicable to a series of cascaded distillation column processes. The conditions for control and input-output relations are discusssed in view of the global control strategy. The increase in complexity with increased number of series cascaded distillation column processes is tackled. Uncertainty in the model parameters is discussed with respect to the dynamics of the global train distillation process. The main outcome of this work is insight into the possible control methodologies for this particular class of distillation processes

    Modelling and predictive control of a drum-type boiler

    Get PDF
    Boilers generate steam continuously and on a large scale. Controlling the boiler process is extremely difficult - it is a highly nonlinear process, its dynamics vary with load and it is strongly multivariable. It is also inherently unstable due to the integrator effect of the drum. In addition, boilers are commonly used in situations where the load can change suddenly and without prior warning. Traditionally, boilers have been controlled by Single-Input, Single-Output (SISO) Proportional plus Integral (PI) controllers. This strategy does not take into account the interaction of the controlled variables or the effect of load on boiler dynamics. This work investigates whether boiler control can be improved by applying multivariable or nonlinear predictive control strategies. Predictive control is a model-based control strategy which is chosen for its ability to handle nonlinear, constrained and multivariable systems. Two nonlinear controllers are developed - a fuzzified linear predictive controller which is based upon several linearised models of the plant and and a nonlinear predictive controller, based upon a single nonlinear plant model. These controllers are compared both with each other and with the conventional PI control strategy. A detailed first-principles model of the boiler is developed for this work. This is used to simulate a boiler plant for controller testing. It is also used to derive a linear state-space model for the linear predictive controller. The nonlinear predictive controllers uses a neural network model

    A Multivariable Approach for Control System Optimization of IGCC with CCS in DECAR Bit Project

    Get PDF
    Abstract IGCCs with CCS differ from existing IGCCs mainly because of steam integration between gasification process and combined cycle, and because of selective capture of CO2. A dynamic simulator of IGCCs with CCS considered in DECARBit project was developed by using a in house code, ALTERLEGO, and a commercial code ASPEN HYSYS ® . Simulators were used to assess flexibility of the process design and effectiveness of the control system during load changes. Starting from steady state results at nominal load, the simulator development has been implemented to assure a stable transient behavior during load reduction. As a result of this study, the flue-gas temperature and IP pressure should be regulated at fixed setpoint. Moreover, critical behavior of CO shift temperature controllers,can be mitigated by means of suitable setpoint coordination
    corecore