1,102 research outputs found

    Some colouring problems for Paley graphs

    Get PDF
    The Paley graph Pq, where q≡1(mod4) is a prime power, is the graph with vertices the elements of the finite field Fq and an edge between x and y if and only if x-y is a non-zero square in Fq. This paper gives new results on some colouring problems for Paley graphs and related discussion. © 2005 Elsevier B.V. All rights reserved

    On the quantum chromatic number of a graph

    Get PDF
    We investigate the notion of quantum chromatic number of a graph, which is the minimal number of colours necessary in a protocol in which two separated provers can convince an interrogator with certainty that they have a colouring of the graph. After discussing this notion from first principles, we go on to establish relations with the clique number and orthogonal representations of the graph. We also prove several general facts about this graph parameter and find large separations between the clique number and the quantum chromatic number by looking at random graphs. Finally, we show that there can be no separation between classical and quantum chromatic number if the latter is 2, nor if it is 3 in a restricted quantum model; on the other hand, we exhibit a graph on 18 vertices and 44 edges with chromatic number 5 and quantum chromatic number 4.Comment: 7 pages, 1 eps figure; revtex4. v2 has some new references; v3 furthe small improvement

    Some results on chromatic number as a function of triangle count

    Full text link
    A variety of powerful extremal results have been shown for the chromatic number of triangle-free graphs. Three noteworthy bounds are in terms of the number of vertices, edges, and maximum degree given by Poljak \& Tuza (1994), and Johansson. There have been comparatively fewer works extending these types of bounds to graphs with a small number of triangles. One noteworthy exception is a result of Alon et. al (1999) bounding the chromatic number for graphs with low degree and few triangles per vertex; this bound is nearly the same as for triangle-free graphs. This type of parametrization is much less rigid, and has appeared in dozens of combinatorial constructions. In this paper, we show a similar type of result for χ(G)\chi(G) as a function of the number of vertices nn, the number of edges mm, as well as the triangle count (both local and global measures). Our results smoothly interpolate between the generic bounds true for all graphs and bounds for triangle-free graphs. Our results are tight for most of these cases; we show how an open problem regarding fractional chromatic number and degeneracy in triangle-free graphs can resolve the small remaining gap in our bounds
    • …
    corecore