452 research outputs found

    Word graphs size impact on the performance of handwriting document applications

    Full text link
    [EN] Two document processing applications are con- sidered: computer-assisted transcription of text images (CATTI) and Keyword Spotting (KWS), for transcribing and indexing handwritten documents, respectively. Instead of working directly on the handwriting images, both of them employ meta-data structures called word graphs (WG), which are obtained using segmentation-free hand- written text recognition technology based on N-gram lan- guage models and hidden Markov models. A WG contains most of the relevant information of the original text (line) image required by CATTI and KWS but, if it is too large, the computational cost of generating and using it can become unafordable. Conversely, if it is too small, relevant information may be lost, leading to a reduction of CATTI or KWS performance. We study the trade-off between WG size and performance in terms of effectiveness and effi- ciency of CATTI and KWS. Results show that small, computationally cheap WGs can be used without loosing the excellent CATTI and KWS performance achieved with huge WGs.Work partially supported by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMAMATER, by the Spanish MECD as part of the Valorization and I+D+I Resources program of VLC/CAMPUS in the International Excellence Campus program, and through the EU projects: HIMANIS (JPICH programme, Spanish Grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, Grant Ref. 674943).Toselli ., AH.; Romero Gómez, V.; Vidal, E. (2017). Word graphs size impact on the performance of handwriting document applications. Neural Computing and Applications. 28(9):2477-2487. https://doi.org/10.1007/s00521-016-2336-2S24772487289Amengual JC, Vidal E (1998) Efficient error-correcting Viterbi parsing. IEEE Trans Pattern Anal Mach Intell 20(10):1109–1116Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans Pattern Anal Mach Intell 21(6):495–504Erman L, Lesser V (1990) The HEARSAY-II speech understanding system: a tutorial. Readings in Speech Reasoning, pp 235–245Evermann G (1999) Minimum word error rate decoding. Ph.D. thesis, Churchill College, University of CambridgeFischer A, Wuthrich M, Liwicki M, Frinken V, Bunke H, Viehhauser G, Stolz M (2009) Automatic transcription of handwritten medieval documents. In: 15th international conference on virtual systems and multimedia, 2009. VSMM ’09, pp 137–142Frinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224Furcy D, Koenig S (2005) Limited discrepancy beam search. In: Proceedings of the 19th international joint conference on artificial intelligence, IJCAI’05, pp 125–131Granell E, Martínez-Hinarejos CD (2015) Multimodal output combination for transcribing historical handwritten documents. In: 16th international conference on computer analysis of images and patterns, CAIP 2015, chap, pp 246–260. Springer International PublishingHakkani-Tr D, Bchet F, Riccardi G, Tur G (2006) Beyond ASR 1-best: using word confusion networks in spoken language understanding. Comput Speech Lang 20(4):495–514Jelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeJurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language processing, speech recognition, and computational linguistics, 2nd edn. Prentice-Hall, Englewood CliffsKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer SocietyLiu P, Soong FK (2006) Word graph based speech recognition error correction by handwriting input. In: Proceedings of the 8th international conference on multimodal interfaces, ICMI ’06, pp 339–346. ACMLowerre BT (1976) The harpy speech recognition system. Ph.D. thesis, Pittsburgh, PALuján-Mares M, Tamarit V, Alabau V, Martínez-Hinarejos CD, Pastor M, Sanchis A, Toselli A (2008) iATROS: a speech and handwritting recognition system. In: V Jornadas en Tecnologías del Habla (VJTH’2008), pp 75–78Mangu L, Brill E, Stolcke A (2000) Finding consensus in speech recognition: word error minimization and other applications of confusion networks. Comput Speech Lang 14(4):373–400Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMohri M, Pereira F, Riley M (2002) Weighted finite-state transducers in speech recognition. Comput Speech Lang 16(1):69–88Odell JJ, Valtchev V, Woodland PC, Young SJ (1994) A one pass decoder design for large vocabulary recognition. In: Proceedings of the workshop on human language technology, HLT ’94, pp 405–410. Association for Computational LinguisticsOerder M, Ney H (1993) Word graphs: an efficient interface between continuous-speech recognition and language understanding. IEEE Int Conf Acoust Speech Signal Process 2:119–122Olivie J, Christianson C, McCarry J (eds) (2011) Handbook of natural language processing and machine translation. Springer, BerlinOrtmanns S, Ney H, Aubert X (1997) A word graph algorithm for large vocabulary continuous speech recognition. Comput Speech Lang 11(1):43–72Padmanabhan M, Saon G, Zweig G (2000) Lattice-based unsupervised MLLR for speaker adaptation. In: ASR2000-automatic speech recognition: challenges for the New Millenium ISCA Tutorial and Research Workshop (ITRW)Pesch H, Hamdani M, Forster J, Ney H (2012) Analysis of preprocessing techniques for latin handwriting recognition. In: International conference on frontiers in handwriting recognition, ICFHR’12, pp 280–284Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N, Hannemann M, Motlicek P, Qian Y, Schwarz P, Silovsky J, Stemmer G, Vesely K (2011) The Kaldi speech recognition toolkit. In: IEEE 2011 workshop on automatic speech recognition and understanding. IEEE Signal Processing SocietyPovey D, Hannemann M, Boulianne G, Burget L, Ghoshal A, Janda M, Karafiat M, Kombrink S, Motlcek P, Qian Y, Riedhammer K, Vesely K, Vu NT (2012) Generating Exact Lattices in the WFST Framework. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP)Rabiner L (1989) A tutorial of hidden Markov models and selected application in speech recognition. Proc IEEE 77:257–286Robertson S (2008) A new interpretation of average precision. In: Proceedings of the international ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACMRomero V, Toselli AH, Rodríguez L, Vidal E (2007) Computer assisted transcription for ancient text images. Proc Int Conf Image Anal Recogn LNCS 4633:1182–1193Romero V, Toselli AH, Vidal E (2012) Multimodal interactive handwritten text transcription. Series in machine perception and artificial intelligence (MPAI). World Scientific Publishing, SingaporeRybach D, Gollan C, Heigold G, Hoffmeister B, Lööf J, Schlüter R, Ney H (2009) The RWTH aachen university open source speech recognition system. In: Interspeech, pp 2111–2114Sánchez J, Mühlberger G, Gatos B, Schofield P, Depuydt K, Davis R, Vidal E, de Does J (2013) tranScriptorium: an European project on handwritten text recognition. In: DocEng, pp 227–228Saon G, Povey D, Zweig G (2005) Anatomy of an extremely fast LVCSR decoder. In: INTERSPEECH, pp 549–552Strom N (1995) Generation and minimization of word graphs in continuous speech recognition. In: Proceedings of IEEE workshop on ASR’95, pp 125–126. Snowbird, UtahTanha J, de Does J, Depuydt K (2015) Combining higher-order N-grams and intelligent sample selection to improve language modeling for Handwritten Text Recognition. In: ESANN 2015 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning, pp 361–366Toselli A, Romero V, i Gadea MP, Vidal E (2010) Multimodal interactive transcription of text images. Pattern Recogn 43(5):1814–1825Toselli A, Romero V, Vidal E (2015) Word-graph based applications for handwriting documents: impact of word-graph size on their performances. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis. Lecture Notes in Computer Science, vol 9117, pp 253–261. Springer International PublishingToselli AH, Juan A, Keysers D, Gonzlez J, Salvador I, Ney H, Vidal E, Casacuberta F (2004) Integrated handwriting recognition and interpretation using finite-state models. Int J Pattern Recogn Artif Intell 18(4):519–539Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR’13). IEEE Computer SocietyToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politècnica de ValènciaUeffing N, Ney H (2007) Word-level confidence estimation for machine translation. Comput Linguist 33(1):9–40. doi: 10.1162/coli.2007.33.1.9Vinciarelli A, Bengio S, Bunke H (2004) Off-line recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans Pattern Anal Mach Intell 26(6):709–720Weng F, Stolcke A, Sankar A (1998) Efficient lattice representation and generation. In: Proceedings of ICSLP, pp 2531–2534Wessel F, Schluter R, Macherey K, Ney H (2001) Confidence measures for large vocabulary continuous speech recognition. IEEE Trans Speech Audio Process 9(3):288–298Wolf J, Woods W (1977) The HWIM speech understanding system. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP ’77, vol 2, pp 784–787Woodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76Young S, Odell J, Ollason D, Valtchev V, Woodland P (1997) The HTK book: hidden Markov models toolkit V2.1. Cambridge Research Laboratory Ltd, CambridgeYoung S, Russell N, Thornton J (1989) Token passing: a simple conceptual model for connected speech recognition systems. Technical reportZhu M (2004) Recall, precision and average precision. Working Paper 2004–09 Department of Statistics and Actuarial Science, University of WaterlooZimmermann M, Bunke H (2004) Optimizing the integration of a statistical language model in hmm based offline handwritten text recognition. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 2, pp 541–54

    A Study of Machine Learning Models in Epidemic Surveillance: Using the Query Logs of Search Engines

    Get PDF
    Epidemics inevitably result in a large number of deaths and always cause considerable social and economic damage. Epidemic surveillance has thus become an important healthcare research issue. In 2009, Ginsberg et al. observed that the query logs of search engines can be used to estimate the status of epidemics in a timely manner. In this paper, we model epidemic surveillance as a classification problem and employ query statistics from Google to classify the status of a dengue fever epidemic. The query logs of twenty-three dengue-related keywords serve as observations for machine learning and testing, and a number of machine learning models are investigated to evaluate their surveillance performance. Evaluations based on a 5-year real world dataset demonstrate that search engine query logs can be used to construct accurate epidemic status classifiers. Moreover, the learned classifiers generally outperform conventional regression approaches. We also apply various machine learning models, including generative, discriminative, sequential, and non-sequential classification models, to demonstrate their applicability to epidemic surveillance

    Semantic Interpretation of User Queries for Question Answering on Interlinked Data

    Get PDF
    The Web of Data contains a wealth of knowledge belonging to a large number of domains. Retrieving data from such precious interlinked knowledge bases is an issue. By taking the structure of data into account, it is expected that upcoming generation of search engines is approaching to question answering systems, which directly answer user questions. But developing a question answering over these interlinked data sources is still challenging because of two inherent characteristics: First, different datasets employ heterogeneous schemas and each one may only contain a part of the answer for a certain question. Second, constructing a federated formal query across different datasets requires exploiting links between these datasets on both the schema and instance levels. In this respect, several challenges such as resource disambiguation, vocabulary mismatch, inference, link traversal are raised. In this dissertation, we address these challenges in order to build a question answering system for Linked Data. We present our question answering system Sina, which transforms user-supplied queries (i.e. either natural language queries or keyword queries) into conjunctive SPARQL queries over a set of interlinked data sources. The contributions of this work are as follows: 1. A novel approach for determining the most suitable resources for a user-supplied query from different datasets (disambiguation approach). We employed a Hidden Markov Model, whose parameters were bootstrapped with different distribution functions. 2. A novel method for constructing federated formal queries using the disambiguated resources and leveraging the linking structure of the underlying datasets. This approach essentially relies on a combination of domain and range inference as well as a link traversal method for constructing a connected graph, which ultimately renders a corresponding SPARQL query. 3. Regarding the problem of vocabulary mismatch, our contribution is divided into two parts, First, we introduce a number of new query expansion features based on semantic and linguistic inferencing over Linked Data. We evaluate the effectiveness of each feature individually as well as their combinations, employing Support Vector Machines and Decision Trees. Second, we propose a novel method for automatic query expansion, which employs a Hidden Markov Model to obtain the optimal tuples of derived words. 4. We provide two benchmarks for two different tasks to the community of question answering systems. The first one is used for the task of question answering on interlinked datasets (i.e. federated queries over Linked Data). The second one is used for the vocabulary mismatch task. We evaluate the accuracy of our approach using measures like mean reciprocal rank, precision, recall, and F-measure on three interlinked life-science datasets as well as DBpedia. The results of our accuracy evaluation demonstrate the effectiveness of our approach. Moreover, we study the runtime of our approach in its sequential as well as parallel implementations and draw conclusions on the scalability of our approach on Linked Data

    Accessing spoken interaction through dialogue processing [online]

    Get PDF
    Zusammenfassung Unser Leben, unsere Leistungen und unsere Umgebung, alles wird derzeit durch Schriftsprache dokumentiert. Die rasante Fortentwicklung der technischen Möglichkeiten Audio, Bilder und Video aufzunehmen, abzuspeichern und wiederzugeben kann genutzt werden um die schriftliche Dokumentation von menschlicher Kommunikation, zum Beispiel Meetings, zu unterstützen, zu ergänzen oder gar zu ersetzen. Diese neuen Technologien können uns in die Lage versetzen Information aufzunehmen, die anderweitig verloren gehen, die Kosten der Dokumentation zu senken und hochwertige Dokumente mit audiovisuellem Material anzureichern. Die Indizierung solcher Aufnahmen stellt die Kerntechnologie dar um dieses Potential auszuschöpfen. Diese Arbeit stellt effektive Alternativen zu schlüsselwortbasierten Indizes vor, die Suchraumeinschränkungen bewirken und teilweise mit einfachen Mitteln zu berechnen sind. Die Indizierung von Sprachdokumenten kann auf verschiedenen Ebenen erfolgen: Ein Dokument gehört stilistisch einer bestimmten Datenbasis an, welche durch sehr einfache Merkmale bei hoher Genauigkeit automatisch bestimmt werden kann. Durch diese Art von Klassifikation kann eine Reduktion des Suchraumes um einen Faktor der Größenordnung 4­10 erfolgen. Die Anwendung von thematischen Merkmalen zur Textklassifikation bei einer Nachrichtendatenbank resultiert in einer Reduktion um einen Faktor 18. Da Sprachdokumente sehr lang sein können müssen sie in thematische Segmente unterteilt werden. Ein neuer probabilistischer Ansatz sowie neue Merkmale (Sprecherinitia­ tive und Stil) liefern vergleichbare oder bessere Resultate als traditionelle schlüsselwortbasierte Ansätze. Diese thematische Segmente können durch die vorherrschende Aktivität charakterisiert werden (erzählen, diskutieren, planen, ...), die durch ein neuronales Netz detektiert werden kann. Die Detektionsraten sind allerdings begrenzt da auch Menschen diese Aktivitäten nur ungenau bestimmen. Eine maximale Reduktion des Suchraumes um den Faktor 6 ist bei den verwendeten Daten theoretisch möglich. Eine thematische Klassifikation dieser Segmente wurde ebenfalls auf einer Datenbasis durchgeführt, die Detektionsraten für diesen Index sind jedoch gering. Auf der Ebene der einzelnen Äußerungen können Dialogakte wie Aussagen, Fragen, Rückmeldungen (aha, ach ja, echt?, ...) usw. mit einem diskriminativ trainierten Hidden Markov Model erkannt werden. Dieses Verfahren kann um die Erkennung von kurzen Folgen wie Frage/Antwort­Spielen erweitert werden (Dialogspiele). Dialogakte und ­spiele können eingesetzt werden um Klassifikatoren für globale Sprechstile zu bauen. Ebenso könnte ein Benutzer sich an eine bestimmte Dialogaktsequenz erinnern und versuchen, diese in einer grafischen Repräsentation wiederzufinden. In einer Studie mit sehr pessimistischen Annahmen konnten Benutzer eines aus vier ähnlichen und gleichwahrscheinlichen Gesprächen mit einer Genauigkeit von ~ 43% durch eine graphische Repräsentation von Aktivität bestimmt. Dialogakte könnte in diesem Szenario ebenso nützlich sein, die Benutzerstudie konnte aufgrund der geringen Datenmenge darüber keinen endgültigen Aufschluß geben. Die Studie konnte allerdings für detailierte Basismerkmale wie Formalität und Sprecheridentität keinen Effekt zeigen. Abstract Written language is one of our primary means for documenting our lives, achievements, and environment. Our capabilities to record, store and retrieve audio, still pictures, and video are undergoing a revolution and may support, supplement or even replace written documentation. This technology enables us to record information that would otherwise be lost, lower the cost of documentation and enhance high­quality documents with original audiovisual material. The indexing of the audio material is the key technology to realize those benefits. This work presents effective alternatives to keyword based indices which restrict the search space and may in part be calculated with very limited resources. Indexing speech documents can be done at a various levels: Stylistically a document belongs to a certain database which can be determined automatically with high accuracy using very simple features. The resulting factor in search space reduction is in the order of 4­10 while topic classification yielded a factor of 18 in a news domain. Since documents can be very long they need to be segmented into topical regions. A new probabilistic segmentation framework as well as new features (speaker initiative and style) prove to be very effective compared to traditional keyword based methods. At the topical segment level activities (storytelling, discussing, planning, ...) can be detected using a machine learning approach with limited accuracy; however even human annotators do not annotate them very reliably. A maximum search space reduction factor of 6 is theoretically possible on the databases used. A topical classification of these regions has been attempted on one database, the detection accuracy for that index, however, was very low. At the utterance level dialogue acts such as statements, questions, backchannels (aha, yeah, ...), etc. are being recognized using a novel discriminatively trained HMM procedure. The procedure can be extended to recognize short sequences such as question/answer pairs, so called dialogue games. Dialog acts and games are useful for building classifiers for speaking style. Similarily a user may remember a certain dialog act sequence and may search for it in a graphical representation. In a study with very pessimistic assumptions users are able to pick one out of four similar and equiprobable meetings correctly with an accuracy ~ 43% using graphical activity information. Dialogue acts may be useful in this situation as well but the sample size did not allow to draw final conclusions. However the user study fails to show any effect for detailed basic features such as formality or speaker identity

    Keyword Detection in Text Summarization

    Get PDF
    Summarization is the process of reducing a text document in order to create a summary that retains the most important points of the original document. As the problem of information overload has grown, and as the quantity of data has increased, so has interest in automatic summarization. Extractive summary works on the given text to extract sentences that best convey the message hidden in the text. Most extractive summarization techniques revolve around the concept of indexing keywords and extracting sentences that have more keywords than the rest. Keyword extraction usually is done by extracting important words having a higher frequency than others, with stress on important. However the current techniques to handle this importance include a stop list which might include words that are critically important to the text. In this thesis, I present a work in progress to define an algorithm to extract truly significant keywords which might have lost its significance if subjected to the current keyword extraction algorithms

    Duration modeling with semi-Markov Conditional Random Fields for keyphrase extraction

    Full text link
    Existing methods for keyphrase extraction need preprocessing to generate candidate phrase or post-processing to transform keyword into keyphrase. In this paper, we propose a novel approach called duration modeling with semi-Markov Conditional Random Fields (DM-SMCRFs) for keyphrase extraction. First of all, based on the property of semi-Markov chain, DM-SMCRFs can encode segment-level features and sequentially classify the phrase in the sentence as keyphrase or non-keyphrase. Second, by assuming the independence between state transition and state duration, DM-SMCRFs model the distribution of duration (length) of keyphrases to further explore state duration information, which can help identify the size of keyphrase. Based on the convexity of parametric duration feature derived from duration distribution, a constrained Viterbi algorithm is derived to improve the performance of decoding in DM-SMCRFs. We thoroughly evaluate the performance of DM-SMCRFs on the datasets from various domains. The experimental results demonstrate the effectiveness of proposed model

    Enhancing posterior based speech recognition systems

    Get PDF
    The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this thesis, we present a principled framework for enhancing the estimation of local posteriors, by integrating phonetic and lexical knowledge, as well as long contextual information. This framework allows for hierarchical estimation, integration and use of local posteriors from the phoneme up to the word level. We propose two approaches for enhancing the posteriors. In the first approach, phoneme posteriors estimated with an ANN (particularly multi-layer Perceptron – MLP) are used as emission probabilities in HMM forward-backward recursions. This yields new enhanced posterior estimates integrating HMM topological constraints (encoding specific phonetic and lexical knowledge), and long context. In the second approach, a temporal context of the regular MLP posteriors is post-processed by a secondary MLP, in order to learn inter and intra dependencies among the phoneme posteriors. The learned knowledge is integrated in the posterior estimation during the inference (forward pass) of the second MLP, resulting in enhanced posteriors. The use of resulting local enhanced posteriors is investigated in a wide range of posterior based speech recognition systems (e.g. Tandem and hybrid HMM/ANN), as a replacement or in combination with the regular MLP posteriors. The enhanced posteriors consistently outperform the regular posteriors in different applications over small and large vocabulary databases

    Keyword Detection in Text Summarization

    Get PDF
    Summarization is the process of reducing a text document in order to create a summary that retains the most important points of the original document. As the problem of information overload has grown, and as the quantity of data has increased, so has interest in automatic summarization. Extractive summary works on the given text to extract sentences that best convey the message hidden in the text. Most extractive summarization techniques revolve around the concept of indexing keywords and extracting sentences that have more keywords than the rest. Keyword extraction usually is done by extracting important words having a higher frequency than others, with stress on important. However the current techniques to handle this importance include a stop list which might include words that are critically important to the text. In this thesis, I present a work in progress to define an algorithm to extract truly significant keywords which might have lost its significance if subjected to the current keyword extraction algorithms
    corecore