116 research outputs found

    Two-Dimensional Pursuit-Evasion in a Compact Domain with Piecewise Analytic Boundary

    Full text link
    In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about pursuit-evasion games in topological spaces. First, we show that one pursuer has a winning strategy in any CAT(0) space under this restrictive capture criterion. This complements a result of Alexander, Bishop and Ghrist, who provide a winning strategy for a game with positive capture radius. Second, we consider the game played in a compact domain in Euclidean two-space with piecewise analytic boundary and arbitrary Euler characteristic. We show that three pursuers always have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from polygonal environments to our more general setting.Comment: 21 pages, 6 figure

    Geometric Pursuit Evasion

    Get PDF
    In this dissertation we investigate pursuit evasion problems set in geometric environments. These games model a variety of adversarial situations in which a team of agents, called pursuers, attempts to catch a rogue agent, called the evader. In particular, we consider the following problem: how many pursuers, each with the same maximum speed as the evader, are needed to guarantee a successful capture? Our primary focus is to provide combinatorial bounds on the number of pursuers that are necessary and sufficient to guarantee capture. The first problem we consider consists of an unpredictable evader that is free to move around a polygonal environment of arbitrary complexity. We assume that the pursuers have complete knowledge of the evader's location at all times, possibly obtained through a network of cameras placed in the environment. We show that regardless of the number of vertices and obstacles in the polygonal environment, three pursuers are always sufficient and sometimes necessary to capture the evader. We then consider several extensions of this problem to more complex environments. In particular, suppose the players move on the surface of a 3-dimensional polyhedral body; how many pursuers are required to capture the evader? We show that 4 pursuers always suffice (upper bound), and that 3 are sometimes necessary (lower bound), for any polyhedral surface with genus zero. Generalizing this bound to surfaces of genus g, we prove the sufficiency of (4g + 4) pursuers. Finally, we show that 4 pursuers also suffice under the "weighted region" constraints, where the movement costs through different regions of the (genus zero) surface have (different) multiplicative weights. Next we consider a more general problem with a less restrictive sensing model. The pursuers' sensors are visibility based, only providing the location of the evader if it is in direct line of sight. We begin my making only the minimalist assumption that pursuers and the evader have the same maximum speed. When the environment is a simply-connected (hole-free) polygon of n vertices, we show that Θ(n^1/2 ) pursuers are both necessary and sufficient in the worst-case. When the environment is a polygon with holes, we prove a lower bound of Ω(n^2/3 ) and an upper bound of O(n^5/6 ) pursuers, where n includes the vertices of the hole boundaries. However, we show that with realistic constraints on the polygonal environment these bounds can be drastically improved. Namely, if the players' movement speed is small compared to the features of the environment, we give an algorithm with a worst case upper bound of O(log n) pursuers for simply-connected n-gons and O(√h + log n) for polygons with h holes. The final problem we consider takes a small step toward addressing the fact that location sensing is noisy and imprecise in practice. Suppose a tracking agent wants to follow a moving target in the two-dimensional plane. We investigate what is the tracker's best strategy to follow the target and at what rate does the distance between the tracker and target grow under worst-case localization noise. We adopt a simple but realistic model of relative error in sensing noise: the localization error is proportional to the true distance between the tracker and the target. Under this model we are able to give tight upper and lower bounds for the worst-case tracking performance, both with or without obstacles in the Euclidean plane

    Asymmetric Robot Motion Design for Pursuit-Evasion Games

    Get PDF
    Symmetric turning control is the typical design choice for most machines. However, historical examples of asymmetric machine design, as well as examples of asymmetry in nature, suggest that asymmetric turning may be a potential advantage in adversarial applications. For instance, aircraft of World Wars I and II were plagued by asymmetric turning controls as a result of gyroscopic forces from the rotating engine. Pilots of the time actually believed this to be a feature, not a bug, suggesting that the asymmetric turning improved strategic evasion and pursuit during battle. As autonomous robots become increasingly critical in military operations, it is imperative that we endow them with strategic designs for better performance. We seek to understand if asymmetric turning is an advantageous design. Using Karaman and Frazzoli's sample-based algorithm for pursuit-evasion games, software simulates robot motion planning in an asymmetric Dubins state space to observe how asymmetric turning influences agent success. We demonstrate mathematically that the Dubins interval path solutions are applicable to asymmetric Dubins vehicles, as both are utilized within the simulation. The Open Motion Planning Library (OMPL) is leveraged to implement the pursuit-evasion game algorithm. To simulate asymmetric action, agents are assigned varying degrees of asymmetric turning constraints, such that as one turn sharpens, the other broadens. Agents then compete in a pursuit-evasion game. Pursuit-evasion games are simulated across a range of asymmetric turning match-ups and agent starting positions. Results show that pursuer success increases as its asymmetry increases. Evader success remains constant, regardless of asymmetric turning influence. Furthermore, the advantages of asymmetric turning can be further augmented when considered in conjunction with relative agent starting position. The results of this research inform more intelligent machine design strategies for vehicles in dynamic spaces

    Unmanned vehicles formation control in 3D space and cooperative search

    Get PDF
    The first problem considered in this dissertation is the decentralized non-planar formation control of multiple unmanned vehicles using graph rigidity. The three-dimensional formation control problem consists of n vehicles operating in a plane Q and r vehicles that operate in an upper layer outside of the plane Q. This can be referred to as a layered formation control where the objective is for all vehicles to cooperatively acquire a predefined formation shape using a decentralized control law. The proposed control strategy is based on regulating the inter-vehicle distances and uses backstepping and Lyapunov approaches. Three different models, with increasing level of complexity are considered for the multi-vehicle system: the single integrator vehicle model, the double integrator vehicle model, and a model that represents the dynamics of a class of robotics vehicles including wheeled mobile robots, underwater vehicles with constant depth, aircraft with constant altitude, and marine vessels. A rigorous stability analysis is presented that guarantees convergence of the inter-vehicle distances to desired values. Additionally, a new Neural Network (NN)-based control algorithm that uses graph rigidity and relative positions of the vehicles is proposed to solve the formation control problem of unmanned vehicles in 3D space. The control law for each vehicle consists of a nonlinear component that is dependent on the closed-loop error dynamics plus a NN component that is linear in the output weights (a one-tunable layer NN is used). A Lyapunov analysis shows that the proposed distance-based control strategy achieves the uniformly ultimately bounded stability of the desired infinitesimally and minimally rigid formation and that NN weights remain bounded. Simulation results are included to demonstrate the performance of the proposed method. The second problem addressed in this dissertation is the cooperative unmanned vehicles search. In search and surveillance operations, deploying a team of unmanned vehicles provides a robust solution that has multiple advantages over using a single vehicle in efficiency and minimizing exploration time. The cooperative search problem addresses the challenge of identifying target(s) in a given environment when using a team of unmarried vehicles by proposing a novel method of mapping and movement of vehicle teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, the vehicles have an efficient travel path while performing searches due to this partitioning approach. Second, a team of unmanned vehicles that move in a cooperative manner and utilize the Tabu Random algorithm is used to search for target(s). Due to the ever-increasing use of robotics and unmanned systems, the field of cooperative multi-vehicle search has developed many applications recently that would benefit from the use of the approach presented in this dissertation, including: search and rescue operations, surveillance, data collection, and border patrol. Simulation results are presented that show the performance of the Tabu Random search algorithm method in combination with hexagonal partitioning

    Application of general semi-infinite Programming to Lapidary Cutting Problems

    Get PDF
    We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of container constraints, which is necessary to make the subproblems practically tractable. An iterative process consisting of GSIP optimization and adaptive refinement steps is then employed to obtain an optimal solution which is also feasible for the original problem. Some numerical results based on realworld data are also presented

    Straight Line Movement in Morphing and Pursuit Evasion

    Get PDF
    Piece-wise linear structures are widely used to define problems and to represent simplified solutions in computational geometry. A piece-wise linear structure consists of straight-line or linear pieces connected together in a continuous geometric environment like 2D or 3D Euclidean spaces. In this thesis two different problems both with the approach of finding piece-wise linear solutions in 2D space are defined and studied: straight-line pursuit evasion and straight-line morphing. Straight-line pursuit evasion is a geometric version of the famous cops and robbers game that is defined in this thesis for the first time. The game is played in a simply connected region in 2D. It is a full information game where the players take turns. The cop’s goal is to catch the robber. In a turn, each player may move any distance along a straight line as long as the line segment connecting their current location to the new location is not blocked by the region’s boundary. We first prove that the cop can always win the game when the players move on the visibility graph of a simple polygon. We prove this by showing that the visibility graph of a simple polygon is “dismantlable” (the known class of cop-win graphs). Polygon visibility graphs are also shown to be 2-dismantlable. Two other settings of the game are also studied in this thesis: when the players are free to move on the infinitely many points inside a simple polygon, and inside a splinegon. In both cases we show that the cop can always win the game. For the case of polygons, the proposed cop strategy gives an asymptotically tight linear bound on the number of steps the cop needs to catch the robber. For the case of splinegons, the cop may need a quadratic number of steps with the proposed strategy, while our best lower bound is linear. Straight-line morphing is a type of morphing first defined in this thesis that provides a nice and smooth transformation between straight-line graph drawings in 2D. In straight- line morphing, each vertex of the graph moves forward along the line segment connecting its initial position to its final position. The vertex trajectories in straight-line morphing are very simple, but because the speed of each vertex may vary, straight-line morphs are more general than the commonly used “linear morphs” where each vertex moves at uniform speed. We explore the problem of whether an initial planar straight-line drawing of a graph can be morphed to a final straight-line drawing of the graph using a straight-line morph that preserves planarity at all times. We prove that this problem is NP-hard even for the special case where the graph drawing consists of disjoint segments. We then look at some restricted versions of the straight-line morphing: when only one vertex moves at a time, when the vertices move one by one to their final positions uninterruptedly, and when the edges morph one by one to their final configurations in the case of disjoint segments. Some of the variations are shown to be still NP-complete while some others are solvable in polynomial time. We conjecture that the class of planar straight-line morphs is as powerful as the class of planar piece-wise linear straight-line morphs. We also explore a simpler problem where for each edge the quadrilateral formed by its initial and final positions together with the trajectories of its two vertices is convex. There is a necessary condition for this case that we conjecture is also sufficient for paths and cycles

    Evaluating the dietary micro-remain record in dental calculus and its application in deciphering hominin diets in Palaeolithic Eurasia

    Get PDF
    Palaeoanthropologists have proposed that Neanderthals, the Middle Palaeolithic hominin occupant of Eurasia, differed from modern human relatives by having specialised diets focused on big game. A narrow dietary niche at the top of the terrestrial food chain is inherently prone to instability, potentially contributing to extinction of the Neanderthals. However, limitations in detecting plant consumption imply that scientists are unaware of much of Neanderthal diet. My dissertation revises the role of plants in Neanderthal subsistence using dental calculus, a material that is recognised to contain food traces, as a source of dietary data. To do this I assessed how accurately calculus records diet, by testing it with a variety of techniques on a population of chimpanzees with decades of documented dietary history. Then, my dissertation examined if it is possible to explore the resilience of the Neanderthal dietary niche by assessing for changes in plant use over time. Comparing diets from different habitats, data suggests a broad range of diets on the Mediterranean rim and in the cooler areas of the Neanderthal range. Surprisingly, the study found no evidence of changes in plant dietary breadth despite variation in environments. This stability implies a deeply resilient ecological niche across their range.Max-Planck-GesellschaftHuman Origin
    • 

    corecore