29,017 research outputs found

    The line planning routing game

    Get PDF
    In this paper, we propose a novel algorithmic approach to solve line planning problems. To this end, we model the line planning problem as a game where the passengers are players which aim at minimizing individual objective functions composed of travel time, transfer penalties, and a share of the overall cost of the solution. To find equilibria of this routing game, we use a best-response algorithm. We investigate, under which conditions on the line planning model a passenger’s best-response can be calculated efficiently and which properties are needed to guarantee convergence of the best-response algorithm. Furthermore, we determine the price of anarchy which bounds the objective value of an equilibrium with respect to a system- optimal solution of the line planning problem. For problems where best-responses cannot be found efficiently, we propose heuristic methods. We demonstrate our findings on some small computational examples

    Learning in Real-Time Search: A Unifying Framework

    Full text link
    Real-time search methods are suited for tasks in which the agent is interacting with an initially unknown environment in real time. In such simultaneous planning and learning problems, the agent has to select its actions in a limited amount of time, while sensing only a local part of the environment centered at the agents current location. Real-time heuristic search agents select actions using a limited lookahead search and evaluating the frontier states with a heuristic function. Over repeated experiences, they refine heuristic values of states to avoid infinite loops and to converge to better solutions. The wide spread of such settings in autonomous software and hardware agents has led to an explosion of real-time search algorithms over the last two decades. Not only is a potential user confronted with a hodgepodge of algorithms, but he also faces the choice of control parameters they use. In this paper we address both problems. The first contribution is an introduction of a simple three-parameter framework (named LRTS) which extracts the core ideas behind many existing algorithms. We then prove that LRTA*, epsilon-LRTA*, SLA*, and gamma-Trap algorithms are special cases of our framework. Thus, they are unified and extended with additional features. Second, we prove completeness and convergence of any algorithm covered by the LRTS framework. Third, we prove several upper-bounds relating the control parameters and solution quality. Finally, we analyze the influence of the three control parameters empirically in the realistic scalable domains of real-time navigation on initially unknown maps from a commercial role-playing game as well as routing in ad hoc sensor networks

    Game Theory Models for the Verification of the Collective Behaviour of Autonomous Cars

    Get PDF
    The collective of autonomous cars is expected to generate almost optimal traffic. In this position paper we discuss the multi-agent models and the verification results of the collective behaviour of autonomous cars. We argue that non-cooperative autonomous adaptation cannot guarantee optimal behaviour. The conjecture is that intention aware adaptation with a constraint on simultaneous decision making has the potential to avoid unwanted behaviour. The online routing game model is expected to be the basis to formally prove this conjecture.Comment: In Proceedings FVAV 2017, arXiv:1709.0212

    Stepwise investment plan optimization for large scale and multi-zonal transmission system expansion

    Get PDF
    This paper develops a long term transmission expansion optimization methodology taking the probabilistic nature of generation and demand, spatial aspects of transmission investments and different technologies into account. The developed methodology delivers a stepwise investment plan to achieve the optimal grid expansion for additional transmission capacity between different zones. In this paper, the optimization methodology is applied to the Spanish and French transmission systems for long term optimization of investments in interconnection capacity

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version
    • …
    corecore