60,924 research outputs found

    LiDAR-derived digital holograms for automotive head-up displays.

    Get PDF
    A holographic automotive head-up display was developed to project 2D and 3D ultra-high definition (UHD) images using LiDAR data in the driver's field of view. The LiDAR data was collected with a 3D terrestrial laser scanner and was converted to computer-generated holograms (CGHs). The reconstructions were obtained with a HeNe laser and a UHD spatial light modulator with a panel resolution of 3840×2160 px for replay field projections. By decreasing the focal distance of the CGHs, the zero-order spot was diffused into the holographic replay field image. 3D holograms were observed floating as a ghost image at a variable focal distance with a digital Fresnel lens into the CGH and a concave lens.This project was funded by the EPSRC Centre for Doctoral Training in Connected Electronic and Photonic Systems (CEPS) (EP/S022139/1), Project Reference: 2249444

    3D Scanning and computer-aided tolerance software analysis for product inspection

    Get PDF
    Tolerances are vital for every physical product, with a tight connection and competing needs between engineering design and manufacturing. 1D, 2D and 3D tolerance analysis can be applied to any product for determining these tolerances. With increase in dimensions the difficulty of tolerance analysis also increases. This research explores tolerance analysis in 3D situation. 3D scanning is a recently developed technology. In the industrial field, this technology is popular for inspecting product quality and in reverse engineering. It compares the dimensions between the 3D scanning model and the CAD model to inspect product quality. It also can generate a CAD model out of the 3D scanning model used in reverse engineering. The device mainly used in 3D scanning is the 3D optical scanner and the 3D laser scanner. These two types of 3D scanner use the same triangulation principle but one uses optical light and the other laser light. This research includes a 3D tolerance analysis and 3D scan. Before tolerance analysis a tolerance stack-up analysis was completed. Tolerance analysis was done using Crystal Ball software. The software uses Monte Carlo simulation to get results based on HTM calculator in Excel. HTM calculator contains every transformation nominal position and tolerance value. HTM calculated nominal position distance should be the same as CAD software Creo measured distance. Transformation nominal position was based on a loop diagram. Tolerance value was based on the defined tolerance in drawing and 3D scanning value. 3D scanning in this research is used to inspect product quality. Both parts and the assembly device were scanned. Parts were selected based on the loop diagram. The device was assembled using 3D scanning parts. The results of the tolerance analysis were shown through distribution charts and sensitivity charts. Comparing the simulation results of 3D scanning data and defined tolerances in drawing, distribution charts results were not reliable but sensitivity charts results were similar. The results of 3D scanning measurement data show the current device tolerance value is too tight. 3D scanning devices used in this research are not suited for large scale implementation, e.g. in product inspection

    Benchmark data set and method for depth estimation from light field images

    Get PDF
    Convolutional neural networks (CNNs) have performed extremely well for many image analysis tasks. However, supervised training of deep CNN architectures requires huge amounts of labeled data, which is unavailable for light field images. In this paper, we leverage on synthetic light field images and propose a two-stream CNN network that learns to estimate the disparities of multiple correlated neighborhood pixels from their epipolar plane images (EPIs). Since the EPIs are unrelated except at their intersection, a two-stream network is proposed to learn convolution weights individually for the EPIs and then combine the outputs of the two streams for disparity estimation. The CNN estimated disparity map is then refined using the central RGB light field image as a prior in a variational technique. We also propose a new real world data set comprising light field images of 19 objects captured with the Lytro Illum camera in outdoor scenes and their corresponding 3D pointclouds, as ground truth, captured with the 3dMD scanner. This data set will be made public to allow more precise 3D pointcloud level comparison of algorithms in the future which is currently not possible. Experiments on the synthetic and real world data sets show that our algorithm outperforms existing state of the art for depth estimation from light field images

    Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing

    Get PDF
    In the field of oral rehabilitation, the combined use of 3D imaging technologies and computer-guided approaches allows the development of reliable tools to be used in preoperative assessment of implant placement. In particular, the accurate transfer of the virtual planning into the operative field through surgical guides represents the main challenge of modern dental implantology. Guided implant positioning allows surgical and prosthetic approaches with minimal trauma by reducing treatment time and decreasing patient’s discomfort. This paper aims at defining a CAD/CAM framework for the accurate planning of flapless dental implant surgery. The system embraces three major applications: (1) freeform modelling, including 3D tissue reconstruction and 2D/3D anatomy visualization, (2) computer-aided surgical planning and customised template modelling, (3) additive manufacturing of guided surgery template. The tissue modelling approach is based on the integration of two maxillofacial imaging techniques: tomographic scanning and surface optical scanning. A 3D virtual maxillofacial model is created by matching radiographic data, captured by a CBCT scanner, and surface anatomical data, acquired by a structured light scanner. The pre-surgical planning process is carried out and controlled within the CAD application by referring to the integrated anatomical model. A surgical guide is then created by solid modelling and manufactured by additive techniques. Two different clinical cases have been approached by inserting 11 different implants. CAD-based planned fixture placements have been transferred into the clinical field by customised surgical guides, made of a biocompatible resin and equipped with drilling sleeves

    MULTI-WAVELENGTHS 3D LASER SCANNING FOR PIGMENT AND STRUCTURAL STUDIES ON THE FRESCOED CEILING <q>THE TRIUMPH OF DIVINE PROVIDENCE</q>

    Get PDF
    Abstract. The modern 3D digitalization techniques open new scenarios on how to transmit to the next generations the state of health of Cultural Heritage (CH) buildings, paintings, frescos or statues. The final goal of the 3D digitalization is an exact replica of the acquired target, but a standard and unique technique able to digitalize artworks of different size and in different ambient light conditions is still far from being successfully ready for the CH field. Even if both laser scanning and photogrammetry can be considered mature techniques, applied with success in most of the Cultural Heritage study cases, they are limited in terms of colour digitalization and image quality in all the cases where ambient light and big sensor-target distances are crucial factors: differently to standard laser scanners, which collect colour information by the use of a coaxial camera and the distance by an IR laser source, the RGB-ITR (Red, Green and Blue Imaging Topological Radar) scanner, developed in ENEA, is equipped with three different laser sources for the simultaneous colour and distance estimation. The present work shows the results obtained applying the above-mentioned multi-wavelengths laser scanner for collecting a complete high-quality 3D colour model of "The Triumph of Divine Providence" vault, painted by Pietro da Cortona on the ceiling of the noble hall inside Palazzo Barberini in Rome.</p

    Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors

    Get PDF
    In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients’ mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning

    Three dimensional asset documentation using terrestrial laser scanner technology

    Get PDF
    Asset documentation is a detailed record or inventory of the properties located within a room or a building. It is important to record the assets in case of property loss happen inside the premise especially when that premise caught fire, earthquake, robbery and others. The instrument used in this study is Faro Laser Scanner Photon 120/20. The object of the study is the computer room of Photogrammetry Lab, Faculty of Geoinformation and Real Estate. The final output of this study is the 3D model of the assets available inside the building. Before 3D model can be formed, the scanned data which is in the form of point cloud generated from the laser scanner have to be registered and georeferenced in order to combine the scans. The combine scans is the representation of the whole area of work surveyed from every scan points. These processes use Faro Scene, software that comes together with the laser scanner. By introducing this method, large scale asset documentation such as for factories and schools would be very beneficial rather than conventional method. The next process is to model the point cloud using AutoCAD 2011. Every item available on the room such as desks, chairs, cubicles, computers, whiteboard, projectors and cupboard are modeled and each of these items was inserted with attributes so that we can know the information of each item
    corecore