935 research outputs found

    The lexicographic closure as a revision process

    Full text link
    The connections between nonmonotonic reasoning and belief revision are well-known. A central problem in the area of nonmonotonic reasoning is the problem of default entailment, i.e., when should an item of default information representing "if A is true then, normally, B is true" be said to follow from a given set of items of such information. Many answers to this question have been proposed but, surprisingly, virtually none have attempted any explicit connection to belief revision. The aim of this paper is to give an example of how such a connection can be made by showing how the lexicographic closure of a set of defaults may be conceptualised as a process of iterated revision by sets of sentences. Specifically we use the revision process of Nayak.Comment: 7 pages, Nonmonotonic Reasoning Workshop 2000 (special session on belief change), at KR200

    Extending the Harper Identity to Iterated Belief Change

    Get PDF
    The field of iterated belief change has focused mainly on revision, with the other main operator of AGM belief change theory, i.e. contraction, receiving relatively little attention. In this paper we extend the Harper Identity from single-step change to define iterated contraction in terms of iterated revision. Specifically, just as the Harper Identity provides a recipe for defining the belief set resulting from contracting A in terms of (i) the initial belief set and (ii) the belief set resulting from revision by ¬A, we look at ways to define the plausibility ordering over worlds resulting from contracting A in terms of (iii) the initial plausibility ordering, and (iv) the plausibility ordering resulting from revision by ¬A. After noting that the most straightforward such extension leads to a trivialisation of the space of permissible orderings, we provide a family of operators for combining plausibility orderings that avoid such a result. These operators are characterised in our domain of interest by a pair of intuitively compelling properties, which turn out to enable the derivation of a number of iterated contraction postulates from postulates for iterated revision. We finish by observing that a salient member of this family allows for the derivation of counterparts for contraction of some well known iterated revision operators, as well as for defining new iterated contraction operators

    Perfect Sequential Reciprocity and Dynamic Consistency

    Get PDF
    Dufwenberg and Kirchsteiger�s (2004) extends Rabin�s (1993) theory of reciprocity in a dynamic sense, introducing a rule of revision for player�s beliefs. The Sequential Reciprocity Equilibrium [SRE] they define can be dynamically inconsistent. In this article it is argued that such dynamic inconsistency is not intrinsically related to issues of reciprocity, but rather to the particular way the beliefs�updating process is modeled. A refinement of the SRE, which is both dynamically consistent and, it is argued, more sound to assumptions usually made in the literature of information economics and philosophy, is proposed.Reciprocity;� Dynamic Consistency

    Taking Defeasible Entailment Beyond Rational Closure

    Get PDF
    We present a systematic approach for extending the KLM framework for defeasible entailment. We first present a class of basic defeasible entailment relations, characterise it in three distinct ways and provide a high-level algorithm for computing it. This framework is then refined, with the refined version being characterised in a similar manner. We show that the two well-known forms of defeasible entailment, rational closure and lexicographic closure, fall within our refined framework, that rational closure is the most conservative of the defeasible entailment relations within the framework (with respect to subset inclusion), but that there are forms of defeasible entailment within our framework that are more “adventurous” than lexicographic closure
    corecore