418 research outputs found

    Smarandache near-rings

    Get PDF
    The main concern of this book is the study of Smarandache analogue properties of near-rings and Smarandache near-rings; so it does not promise to cover all concepts or the proofs of all results

    A note on distributivity of the lattice of L-ideals of a ring

    Get PDF
    Many studies have investigated the lattice of fuzzy substructures of algebraic structures such as groups and rings. In this study, we prove that the lattice of L-ideals of a ring is distributive if and only if the lattice of its ideals is distributive, for an infinitely ?- distributive lattice L. © 2019 Hacettepe University. All rights reserved

    Smarandache Near-rings

    Full text link
    Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B contained in A which is embedded with a stronger structure S. These types of structures occur in our everyday's life, that's why we study them in this book. Thus, as a particular case: A Near-ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c belonging to N we have (a + b) . c = a . c + b . c A Near-field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not-necessarily abelian), {P\{0}, .) is a group. For all a, b, c belonging to P we have (a + b) . c = a . c + b . c A Smarandache Near-ring is a near-ring N which has a proper subset P contained in N, where P is a near-field (with respect to the same binary operations on N).Comment: 200 pages, 50 tables, 20 figure

    Why most papers on filters are really trivial (including this one)

    Full text link
    The aim of this note is to show that many papers on various kinds of filters (and related concepts) in (subreducts of) residuated structures are in fact easy consequences of more general results that have been known for a long time

    Why most papers on filters are really trivial (including this one)

    Get PDF
    The aim of this note is to show that many papers on various kinds of filters (and related concepts) in (subreducts of) residuated structures are in fact easy consequences of more general results that have been known for a long time

    Signed ring families and signed posets

    Get PDF
    The one-to-one correspondence between finite distributive lattices and finite partially ordered sets (posets) is a well-known theorem of G. Birkhoff. This implies a nice representation of any distributive lattice by its corresponding poset, where the size of the former (distributive lattice) is often exponential in the size of the underlying set of the latter (poset). A lot of engineering and economic applications bring us distributive lattices as a ring family of sets which is closed with respect to the set union and intersection. When it comes to a ring family of sets, the underlying set is partitioned into subsets (or components) and we have a poset structure on the partition. This is a set-theoretical variant of the Birkhoff theorem revealing the correspondence between finite ring families and finite posets on partitions of the underlying sets, which was pursued by Masao Iri around 1978, especially concerned with what is called the principal partition of discrete systems such as graphs, matroids, and polymatroids. In the present paper we investigate a signed-set version of the Birkhoff-Iri decomposition in terms of signed ring family, which corresponds to Reiner's result on signed posets, a signed counterpart of the Birkhoff theorem. We show that given a signed ring family, we have a signed partition of the underlying set together with a signed poset on the signed partition which represents the given signed ring family. This representation is unique up to certain reflections
    corecore