3,085 research outputs found

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. IV. Chromatic polynomial with cyclic boundary conditions

    Get PDF
    We study the chromatic polynomial P_G(q) for m \times n square- and triangular-lattice strips of widths 2\leq m \leq 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin--Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n\to\infty. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.Comment: 55 pages (LaTeX2e). Includes tex file, three sty files, and 22 Postscript figures. Also included are Mathematica files transfer4_sq.m and transfer4_tri.m. Journal versio

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<∞C(r) < \infty such that, for all loopless graphs GG of maximum degree ≤r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc ∣q∣<C(r)|q| < C(r). Furthermore, C(r)≤7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime ∣1+ve∣≤1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree ≤r\le r, the zeros of PG(q)P_G(q) lie in the disc ∣q∣<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory

    On the chromatic roots of generalized theta graphs

    Full text link
    The generalized theta graph \Theta_{s_1,...,s_k} consists of a pair of endvertices joined by k internally disjoint paths of lengths s_1,...,s_k \ge 1. We prove that the roots of the chromatic polynomial $pi(\Theta_{s_1,...,s_k},z) of a k-ary generalized theta graph all lie in the disc |z-1| \le [1 + o(1)] k/\log k, uniformly in the path lengths s_i. Moreover, we prove that \Theta_{2,...,2} \simeq K_{2,k} indeed has a chromatic root of modulus [1 + o(1)] k/\log k. Finally, for k \le 8 we prove that the generalized theta graph with a chromatic root that maximizes |z-1| is the one with all path lengths equal to 2; we conjecture that this holds for all k.Comment: LaTex2e, 25 pages including 2 figure
    • …
    corecore