6,743 research outputs found

    The lambda-mu-T-calculus

    Get PDF
    Calculi with control operators have been studied as extensions of simple type theory. Real programming languages contain datatypes, so to really understand control operators, one should also include these in the calculus. As a first step in that direction, we introduce lambda-mu-T, a combination of Parigot's lambda-mu-calculus and G\"odel's T, to extend a calculus with control operators with a datatype of natural numbers with a primitive recursor. We consider the problem of confluence on raw terms, and that of strong normalization for the well-typed terms. Observing some problems with extending the proofs of Baba at al. and Parigot's original confluence proof, we provide new, and improved, proofs of confluence (by complete developments) and strong normalization (by reducibility and a postponement argument) for our system. We conclude with some remarks about extensions, choices, and prospects for an improved presentation

    Lambda Dependency-Based Compositional Semantics

    Full text link
    This short note presents a new formal language, lambda dependency-based compositional semantics (lambda DCS) for representing logical forms in semantic parsing. By eliminating variables and making existential quantification implicit, lambda DCS logical forms are generally more compact than those in lambda calculus

    Denotational Semantics of the Simplified Lambda-Mu Calculus and a New Deduction System of Classical Type Theory

    Full text link
    Classical (or Boolean) type theory is the type theory that allows the type inference σ→⊥)→⊥=>σ\sigma \to \bot) \to \bot => \sigma (the type counterpart of double-negation elimination), where σ\sigma is any type and ⊥\bot is absurdity type. This paper first presents a denotational semantics for a simplified version of Parigot's lambda-mu calculus, a premier example of classical type theory. In this semantics the domain of each type is divided into infinitely many ranks and contains not only the usual members of the type at rank 0 but also their negative, conjunctive, and disjunctive shadows in the higher ranks, which form an infinitely nested Boolean structure. Absurdity type ⊥\bot is identified as the type of truth values. The paper then presents a new deduction system of classical type theory, a sequent calculus called the classical type system (CTS), which involves the standard logical operators such as negation, conjunction, and disjunction and thus reflects the discussed semantic structure in a more straightforward fashion.Comment: In Proceedings CL&C 2016, arXiv:1606.0582

    Models and termination of proof reduction in the λ\lambdaΠ\Pi-calculus modulo theory

    Full text link
    We define a notion of model for the λ\lambdaΠ\Pi-calculus modulo theory and prove a soundness theorem. We then define a notion of super-consistency and prove that proof reduction terminates in the λ\lambdaΠ\Pi-calculus modulo any super-consistent theory. We prove this way the termination of proof reduction in several theories including Simple type theory and the Calculus of constructions
    • …
    corecore