71 research outputs found

    Quadric Surface Fitting Applications to Approximate Dimensional Synthesis

    Get PDF
    An approximate synthesis method is pre- sented that takes a given set of n desired poses of the cou- pler of a four-bar planar mechanism and finds the “best” mechanism that can achieve them. This is accomplished by solving an equivalent unconstrained non-linear minimiza- tion problem. The hyperboloids of one sheet or hyperbolic paraboloids that minimize the distance between the given n poses in the kinematic mapping image space and n cor- responding points that belong to the quadric surfaces, rep- resent the “best” mechanism that can achieve the desired poses. The procedure is tested successfully on an RRRR mechanism

    A Unified Algorithm for Analysis and Simulation of Planar Four-Bar Motions Defined With R- and P-Joints,”

    Get PDF
    ABSTRACT This paper presents a single, unified and efficient algorithm for animating the motions of the coupler of all four-bar mechanisms formed with revolute (R) and prismatic (P) joints. This is achieved without having to formulate and solve the loop closure equation associated with each type of four-bar linkages separately. In our previous paper on four-bar linkage synthesis, we map the planar displacements from Cartesian to image space using planar quaternion. Given a set of image points that represent planar displacements, the problem of synthesizing a planar fourbar linkage is reduced to finding a pencil of Generalized-or Gmanifolds that best fit the image points in the least squares sense. The three planar dyads associated with Generalized G-manifolds are RR, PR and RP which could construct six types of four-bar mechanisms. In this paper, we show that the same unified formulation for linkage synthesis leads to a unified algorithm for linkage analysis and simulation as well. Both the unified synthesis and analysis algorithms have been implemented on Apple's iOS platform

    Synthesis of spatial RPRP closed linkages for a given screw system

    Get PDF
    The dimensional synthesis of spatial chains for a prescribed set of positions can be applied to the design of parallel robots by joining the solutions of each serial chain at the end-effector. This design method does not provide with the knowledge about the trajectory between task positions and, in some cases, may yield a system with negative mobility. These problems can be avoided for some overconstrained but movable linkages if the finite-screw system associated with the motion of the linkage is known. The finite-screw system defining the motion of the robot is generated by a set of screws, which can be related to the set of finite task positions traditionally used in the synthesis theory. The interest of this paper lies in presenting a method to define the whole workspace of the linkage as the input task for the exact dimensional synthesis problem. This method is applied to the spatial RPRP closed linkage, for which one solution exists.Postprint (author’s final draft

    The Study Variety of Conformal Kinematics

    Full text link
    We introduce the Study variety of conformal kinematics and investigate some of its properties. The Study variety is a projective variety of dimension ten and degree twelve in real projective space of dimension 15, and it generalizes the well-known Study quadric model of rigid body kinematics. Despite its high dimension, co-dimension, and degree it is amenable to concrete calculations via conformal geometric algebra (CGA) associated to three-dimensional Euclidean space. Calculations are facilitated by a four quaternion representation which extends the dual quaternion description of rigid body kinematics. In particular, we study straight lines on the Study variety. It turns out that they are related to a class of one-parametric conformal motions introduced by L. Dorst in 2016. Similar to rigid body kinematics, straight lines (that is, Dorst's motions) are important for the decomposition of rational conformal motions into lower degree motions via the factorization of certain polynomials with coefficients in CGA

    Distance-based formulations for the position analysis of kinematic chains

    Get PDF
    This thesis addresses the kinematic analysis of mechanisms, in particular, the position analysis of kinematic chains, or linkages, that is, mechanisms with rigid bodies (links) interconnected by kinematic pairs (joints). This problem, of completely geometrical nature, consists in finding the feasible assembly modes that a kinematic chain can adopt. An assembly mode is a possible relative transformation between the links of a kinematic chain. When an assignment of positions and orientations is made for all links with respect to a given reference frame, an assembly mode is called a configuration. The methods reported in the literature for solving the position analysis of kinematic chains can be classified as graphical, analytical, or numerical. The graphical approaches are mostly geometrical and designed to solve particular problems. The analytical and numerical methods deal, in general, with kinematic chains of any topology and translate the original geometric problem into a system of kinematic analysis of all the Assur kinematic chains resulting from replacing some of its revolute joints by slider joints. Thus, it is concluded that the polynomials of all fully-parallel planar robots can be derived directly from that of the widely known 3-RPR robot. In addition to these results, this thesis also presents an efficient procedure, based on distance and oriented area constraints, and geometrical arguments, to trace coupler curves of pin-jointed Gr¨ubler kinematic chains. All these techniques and results together are contributions to theoretical kinematics of mechanisms, robot kinematics, and distance plane geometry. equations that defines the location of each link based, mainly, on independent loop equations. In the analytical approaches, the system of kinematic equations is reduced to a polynomial, known as the characteristic polynomial of the linkage, using different elimination methods —e.g., Gr¨obner bases or resultant techniques. In the numerical approaches, the system of kinematic equations is solved using, for instance, polynomial continuation or interval-based procedures. In any case, the use of independent loop equations to solve the position analysis of kinematic chains, almost a standard in kinematics of mechanisms, has seldom been questioned despite the resulting system of kinematic equations becomes quite involved even for simple linkages. Moreover, stating the position analysis of kinematic chains directly in terms of poses, with or without using independent loop equations, introduces two major disadvantages: arbitrary reference frames has to be included, and all formulas involve translations and rotations simultaneously. This thesis departs from this standard approach by, instead of directly computing Cartesian locations, expressing the original position problem as a system of distance-based constraints that are then solved using analytical and numerical procedures adapted to their particularities. In favor of developing the basics and theory of the proposed approach, this thesis focuses on the study of the most fundamental planar kinematic chains, namely, Baranov trusses, Assur kinematic chains, and pin-jointed Gr¨ubler kinematic chains. The results obtained have shown that the novel developed techniques are promising tools for the position analysis of kinematic chains and related problems. For example, using these techniques, the characteristic polynomials of most of the cataloged Baranov trusses can be obtained without relying on variable eliminations or trigonometric substitutions and using no other tools than elementary algebra. An outcome in clear contrast with the complex variable eliminations require when independent loop equations are used to tackle the problem. The impact of the above result is actually greater because it is shown that the characteristic polynomial of a Baranov truss, derived using the proposed distance-based techniques, contains all the necessary and sufficient information for solving the positionEsta tesis aborda el problema de análisis de posición de cadenas cinemáticas, mecanismos con cuerpos rígidos (enlaces) interconectados por pares cinemáticos (articulaciones). Este problema, de naturaleza geométrica, consiste en encontrar los modos de ensamblaje factibles que una cadena cinemática puede adoptar. Un modo de ensamblaje es una transformación relativa posible entre los enlaces de una cadena cinemática. Los métodos reportados en la literatura para la solución del análisis de posición de cadenas cinemáticas se pueden clasificar como gráficos, analíticos o numéricos. Los enfoques gráficos son geométricos y se diseñan para resolver problemas particulares. Los métodos analíticos y numéricos tratan con cadenas cinemáticas de cualquier topología y traducen el problema geométrico original en un sistema de ecuaciones cinemáticas que define la ubicación de cada enlace, basado generalmente en ecuaciones de bucle independientes. En los enfoques analíticos, el sistema de ecuaciones cinemáticas se reduce a un polinomio, conocido como el polinomio característico de la cadena cinemática, utilizando diferentes métodos de eliminación. En los métodos numéricos, el sistema se resuelve utilizando, por ejemplo, la continuación polinomial o procedimientos basados en intervalos. En cualquier caso, el uso de ecuaciones de bucle independientes, un estándar en cinemática de mecanismos, rara vez ha sido cuestionado a pesar de que el sistema resultante de ecuaciones es bastante complicado, incluso para cadenas simples. Por otra parte, establecer el análisis de la posición de cadenas cinemáticas directamente en términos de poses, con o sin el uso de ecuaciones de bucle independientes, presenta dos inconvenientes: sistemas de referencia arbitrarios deben ser introducidos, y todas las fórmulas implican traslaciones y rotaciones de forma simultánea. Esta tesis se aparta de este enfoque estándar expresando el problema de posición original como un sistema de restricciones basadas en distancias, en lugar de directamente calcular posiciones cartesianas. Estas restricciones son posteriormente resueltas con procedimientos analíticos y numéricos adaptados a sus particularidades. Con el propósito de desarrollar los conceptos básicos y la teoría del enfoque propuesto, esta tesis se centra en el estudio de las cadenas cinemáticas planas más fundamentales, a saber, estructuras de Baranov, cadenas cinemáticas de Assur, y cadenas cinemáticas de Grübler. Los resultados obtenidos han demostrado que las técnicas desarrolladas son herramientas prometedoras para el análisis de posición de cadenas cinemáticas y problemas relacionados. Por ejemplo, usando dichas técnicas, los polinomios característicos de la mayoría de las estructuras de Baranov catalogadas se puede obtener sin realizar eliminaciones de variables o sustituciones trigonométricas, y utilizando solo álgebra elemental. Un resultado en claro contraste con las complejas eliminaciones de variables que se requieren cuando se utilizan ecuaciones de bucle independientes. El impacto del resultado anterior es mayor porque se demuestra que el polinomio característico de una estructura de Baranov, derivado con las técnicas propuestas, contiene toda la información necesaria y suficiente para resolver el análisis de posición de las cadenas cinemáticas de Assur que resultan de la sustitución de algunas de sus articulaciones de revolución por articulaciones prismáticas. De esta forma, se concluye que los polinomios de todos los robots planares totalmente paralelos se pueden derivar directamente del polinomio característico del conocido robot 3-RPR. Adicionalmente, se presenta un procedimiento eficaz, basado en restricciones de distancias y áreas orientadas, y argumentos geométricos, para trazar curvas de acoplador de cadenas cinemáticas de Grübler. En conjunto, todas estas técnicas y resultados constituyen contribuciones a la cinemática teórica de mecanismos, la cinemática de robots, y la geometría plana de distancias. Barcelona 13

    Carotenoids and Life, Femtoseconds and Light: transient absorption and femtosecond stimulated Raman spectroscopy of free and bound carotenoids

    Get PDF
    Grondelle, R. van [Promotor]Kennis, J.T.M. [Copromotor

    Biokinematic analysis of human body

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2011Includes bibliographical references (leaves: 118-123)Text in English; Abstract: Turkish and Englishxiii, 123 leavesThis thesis concentrates on the development of rigid body geometries by using method of intersections, where simple geometric shapes representing revolute (R) and prismatic (P) joint motions are intersected by means of desired space or subspace requirements to create specific rigid body geometries in predefined octahedral fixed frame. Using the methodical approach, space and subspace motions are clearly visualized by the help of resulting geometrical entities that have physical constraints with respect to the fixed working volume. Also, this work focuses on one of the main areas of the fundamental mechanism and machine science, which is the structural synthesis of robot manipulators by inserting recurrent screws into the theory. After the transformation unit screw equations are presented, physical representations and kinematic representations of kinematic pairs with recurrent screws are given and the new universal mobility formulations for mechanisms and manipulators are introduced. Moreover the study deals with the synthesis of mechanisms by using quaternion and dual quaternion algebra to derive the objective function. Three different methods as interpolation approximation, least squares approximation and Chebyshev approximation is introduced in the function generation synthesis procedures of spherical four bar mechanism in six precision points. Separate examples are given for each section and the results are tabulated. Comparisons between the methods are also given. As an application part of the thesis, the most important elements of the human body and skeletal system is investigated by means of their kinematic structures and degrees of freedom. At the end of each section, an example is given as a mechanism or manipulator that can represent the behavior of the related element in the human body

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein
    corecore