67 research outputs found

    Building Reliable Budget-Based Binary-State Networks

    Full text link
    Everyday life is driven by various network, such as supply chains for distributing raw materials, semi-finished product goods, and final products; Internet of Things (IoT) for connecting and exchanging data; utility networks for transmitting fuel, power, water, electricity, and 4G/5G; and social networks for sharing information and connections. The binary-state network is a basic network, where the state of each component is either success or failure, i.e., the binary-state. Network reliability plays an important role in evaluating the performance of network planning, design, and management. Because more networks are being set up in the real world currently, there is a need for their reliability. It is necessary to build a reliable network within a limited budget. However, existing studies are focused on the budget limit for each minimal path (MP) in networks without considering the total budget of the entire network. We propose a novel concept to consider how to build a more reliable binary-state network under the budget limit. In addition, we propose an algorithm based on the binary-addition-tree algorithm (BAT) and stepwise vectors to solve the problem efficiently

    Development of a Parallel BAT and Its Applications in Binary-state Network Reliability Problems

    Full text link
    Various networks are broadly and deeply applied in real-life applications. Reliability is the most important index for measuring the performance of all network types. Among the various algorithms, only implicit enumeration algorithms, such as depth-first-search, breadth-search-first, universal generating function methodology, binary-decision diagram, and binary-addition-tree algorithm (BAT), can be used to calculate the exact network reliability. However, implicit enumeration algorithms can only be used to solve small-scale network reliability problems. The BAT was recently proposed as a simple, fast, easy-to-code, and flexible make-to-fit exact-solution algorithm. Based on the experimental results, the BAT and its variants outperformed other implicit enumeration algorithms. Hence, to overcome the above-mentioned obstacle as a result of the size problem, a new parallel BAT (PBAT) was proposed to improve the BAT based on compute multithread architecture to calculate the binary-state network reliability problem, which is fundamental for all types of network reliability problems. From the analysis of the time complexity and experiments conducted on 20 benchmarks of binary-state network reliability problems, PBAT was able to efficiently solve medium-scale network reliability problems

    A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation

    Get PDF
    Structural complexity of systems, coupled with their multi-state characteristics, renders their reliability and availability evaluation difficult. Notwithstanding the emergence of various techniques dedicated to complex multi-state system analysis, simulation remains the only approach applicable to realistic systems. However, most simulation algorithms are either system specific or limited to simple systems since they require enumerating all possible system states, defining the cut-sets associated with each state and monitoring their occurrence. In addition to being extremely tedious for large complex systems, state enumeration and cut-set definition require a detailed understanding of the system׳s failure mechanism. In this paper, a simple and generally applicable simulation approach, enhanced for multi-state systems of any topology is presented. Here, each component is defined as a Semi-Markov stochastic process and via discrete-event simulation, the operation of the system is mimicked. The principles of flow conservation are invoked to determine flow across the system for every performance level change of its components using the interior-point algorithm. This eliminates the need for cut-set definition and overcomes the limitations of existing techniques. The methodology can also be exploited to account for effects of transmission efficiency and loading restrictions of components on system reliability and performance. The principles and algorithms developed are applied to two numerical examples to demonstrate their applicability

    Decision Diagram Based Symbolic Algorithm for Evaluating the Reliability of a Multistate Flow Network

    Get PDF
    Evaluating the reliability of Multistate Flow Network (MFN) is an NP-hard problem. Ordered binary decision diagram (OBDD) or variants thereof, such as multivalued decision diagram (MDD), are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1) compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2) The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3) In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks

    Algebraic algorithms for the reliability analysis of multi-state k-out-of-n systems

    Get PDF
    We develop algorithms for the analysis of multi-state k-out-of-n systems and their reliability based on commutative algebra

    Model-based Evaluation: from Dependability Theory to Security

    Get PDF
    How to quantify security is a classic question in the security community that until today has had no plausible answer. Unfortunately, current security evaluation models are often either quantitative but too specific (i.e., applicability is limited), or comprehensive (i.e., system-level) but qualitative. The importance of quantifying security cannot be overstated, but doing so is difficult and complex, for many reason: the “physics” of the amount of security is ambiguous; the operational state is defined by two confronting parties; protecting and breaking systems is a cross-disciplinary mechanism; security is achieved by comparable security strength and breakable by the weakest link; and the human factor is unavoidable, among others. Thus, security engineers face great challenges in defending the principles of information security and privacy. This thesis addresses model-based system-level security quantification and argues that properly addressing the quantification problem of security first requires a paradigm shift in security modeling, addressing the problem at the abstraction level of what defines a computing system and failure model, before any system-level analysis can be established. Consequently, we present a candidate computing systems abstraction and failure model, then propose two failure-centric model-based quantification approaches, each including a bounding system model, performance measures, and evaluation techniques. The first approach addresses the problem considering the set of controls. To bound and build the logical network of a security system, we extend our original work on the Information Security Maturity Model (ISMM) with Reliability Block Diagrams (RBDs), state vectors, and structure functions from reliability engineering. We then present two different groups of evaluation methods. The first mainly addresses binary systems, by extending minimal path sets, minimal cut sets, and reliability analysis based on both random events and random variables. The second group addresses multi-state security systems with multiple performance measures, by extending Multi-state Systems (MSSs) representation and the Universal Generating Function (UGF) method. The second approach addresses the quantification problem when the two sets of a computing system, i.e., assets and controls, are considered. We adopt a graph-theoretic approach using Bayesian Networks (BNs) to build an asset-control graph as the candidate bounding system model, then demonstrate its application in a novel risk assessment method with various diagnosis and prediction inferences. This work, however, is multidisciplinary, involving foundations from many fields, including security engineering; maturity models; dependability theory, particularly reliability engineering; graph theory, particularly BNs; and probability and stochastic models

    Some extensions to reliability modeling and optimization of networked systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities

    Get PDF
    Reliability assessment refers to the process of evaluating reliability of components or systems during their lifespan or prior to their implementation. In the manufacturing industry, the reliability of systems is directly linked to production efficiency, product quality, energy consumption, and other crucial performance indicators. Therefore, reliability plays a critical role in every aspect of manufacturing. In this review, we provide a comprehensive overview of the most significant advancements and trends in the assessment of manufacturing system reliability. For this, we also consider the three main facets of reliability analysis of cyber–physical systems, i.e., hardware, software, and human-related reliability. Beyond the overview of literature, we derive challenges and opportunities for reliability assessment of manufacturing systems based on the reviewed literature. Identified challenges encompass aspects like failure data availability and quality, fast-paced technological advancements, and the increasing complexity of manufacturing systems. In turn, the opportunities include the potential for integrating various assessment methods, and leveraging data to automate the assessment process and to increase accuracy of derived reliability models
    corecore