12,955 research outputs found

    Online Directed Spanners and Steiner Forests

    Get PDF
    We present online algorithms for directed spanners and Steiner forests. These problems fall under the unifying framework of online covering linear programming formulations, developed by Buchbinder and Naor (MOR, 34, 2009), based on primal-dual techniques. Our results include the following: For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized O~(n4/5)\tilde{O}(n^{4/5})-competitive algorithm for graphs with general lengths, where nn is the number of vertices. With uniform lengths, we give an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3+\epsilon})-competitive algorithm, and an efficient deterministic O~(k1/2+ϵ)\tilde{O}(k^{1/2+\epsilon})-competitive algorithm, where kk is the number of terminal pairs. These are the first online algorithms for directed spanners. In the offline setting, the current best approximation ratio with uniform lengths is O~(n3/5+ϵ)\tilde{O}(n^{3/5 + \epsilon}), due to Chlamtac, Dinitz, Kortsarz, and Laekhanukit (TALG 2020). For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3 + \epsilon})-competitive algorithm. The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is O~(k1/2+ϵ)\tilde{O}(k^{1/2 + \epsilon})-competitive. In the offline version, the current best approximation ratio with uniform costs is O~(n26/45+ϵ)\tilde{O}(n^{26/45 + \epsilon}), due to Abboud and Bodwin (SODA 2018). A small modification of the online covering framework by Buchbinder and Naor implies a polynomial-time primal-dual approach with separation oracles, which a priori might perform exponentially many calls. We convert the online spanner problem and the online Steiner forest problem into online covering problems and round in a problem-specific fashion

    Approximation Complexity of Optimization Problems : Structural Foundations and Steiner Tree Problems

    Get PDF
    In this thesis we study the approximation complexity of the Steiner Tree Problem and related problems as well as foundations in structural complexity theory. The Steiner Tree Problem is one of the most fundamental problems in combinatorial optimization. It asks for a shortest connection of a given set of points in an edge-weighted graph. This problem and its numerous variants have applications ranging from electrical engineering, VLSI design and transportation networks to internet routing. It is closely connected to the famous Traveling Salesman Problem and serves as a benchmark problem for approximation algorithms. We give a survey on the Steiner tree Problem, obtaining lower bounds for approximability of the (1,2)-Steiner Tree Problem by combining hardness results of Berman and Karpinski with reduction methods of Bern and Plassmann. We present approximation algorithms for the Steiner Forest Problem in graphs and bounded hypergraphs, the Prize Collecting Steiner Tree Problem and related problems where prizes are given for pairs of terminals. These results are based on the Primal-Dual method and the Local Ratio framework of Bar-Yehuda. We study the Steiner Network Problem and obtain combinatorial approximation algorithms with reasonable running time for two special cases, namely the Uniform Uncapacitated Case and the Prize Collecting Uniform Uncapacitated Case. For the general case, Jain's algorithms obtains an approximation ratio of 2, based on the Ellipsoid Method. We obtain polynomial time approximation schemes for the Dense Prize Collecting Steiner Tree Problem, Dense k-Steiner Problem and the Dense Class Steiner Tree Problem based on the methods of Karpinski and Zelikovsky for approximating the Dense Steiner Tree Problem. Motivated by the question which parameters make the Steiner Tree problem hard to solve, we make an excurs into Fixed Parameter Complexity, focussing on structural aspects of the W-Hierarchy. We prove a Speedup Theorem for the classes FPT and SP and versions if Levin's Lower Bound Theorem for the class SP as well as for Randomized Space Complexity. Starting from the approximation schemes for the dense Steiner Tree problems, we deal with the efficiency of polynomial time approximation schemes in general. We separate the class EPTAS from PTAS under some reasonable complexity theoretic assumption. The same separation was achieved by Cesaty and Trevisan under some assumtion from Fixed Parameter Complexity. We construct an oracle under which our assumtion holds but that of Cesati and Trevisan does not, which implies that using relativizing proof techniques one cannot show that our assumption implies theirs

    Approximating Subdense Instances of Covering Problems

    Full text link
    We study approximability of subdense instances of various covering problems on graphs, defined as instances in which the minimum or average degree is Omega(n/psi(n)) for some function psi(n)=omega(1) of the instance size. We design new approximation algorithms as well as new polynomial time approximation schemes (PTASs) for those problems and establish first approximation hardness results for them. Interestingly, in some cases we were able to prove optimality of the underlying approximation ratios, under usual complexity-theoretic assumptions. Our results for the Vertex Cover problem depend on an improved recursive sampling method which could be of independent interest
    corecore