943 research outputs found

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Speech recognition in noisy environments using a switching linear dynamic model for feature enhancement

    Get PDF
    The performance of automatic speech recognition systems strongly decreases whenever the speech signal is disturbed by background noise. We aim to improve noise robustness focusing on all major levels of speech recognition: feature extraction, feature enhancement, and speech modeling. Different auditory modeling concepts, speech enhancement techniques, training strategies, and model architectures are implemented in an in-car digit and spelling recognition task. We prove that joint speech and noise modeling with a global Switching Linear Dynamic Model (SLDM) capturing the dynamics of speech, and a Linear Dynamic Model (LDM) for noise, prevails over state-of-theart speech enhancement techniques. Furthermore we show that the baseline recognizer of the Interspeech Consonant Challenge 2008 can be outperformed by SLDM feature enhancement for almost all of the noisy testsets

    Emotion recognition based on the energy distribution of plosive syllables

    Get PDF
    We usually encounter two problems during speech emotion recognition (SER): expression and perception problems, which vary considerably between speakers, languages, and sentence pronunciation. In fact, finding an optimal system that characterizes the emotions overcoming all these differences is a promising prospect. In this perspective, we considered two emotional databases: Moroccan Arabic dialect emotional database (MADED), and Ryerson audio-visual database on emotional speech and song (RAVDESS) which present notable differences in terms of type (natural/acted), and language (Arabic/English). We proposed a detection process based on 27 acoustic features extracted from consonant-vowel (CV) syllabic units: \ba, \du, \ki, \ta common to both databases. We tested two classification strategies: multiclass (all emotions combined: joy, sadness, neutral, anger) and binary (neutral vs. others, positive emotions (joy) vs. negative emotions (sadness, anger), sadness vs. anger). These strategies were tested three times: i) on MADED, ii) on RAVDESS, iii) on MADED and RAVDESS. The proposed method gave better recognition accuracy in the case of binary classification. The rates reach an average of 78% for the multi-class classification, 100% for neutral vs. other cases, 100% for the negative emotions (i.e. anger vs. sadness), and 96% for the positive vs. negative emotions

    Vietnamese learners tackling the German /ʃt/ in perception

    Get PDF

    Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features

    Full text link
    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor.Comment: Submitted to ICASSP 202

    New Grapheme Generation Rules for Two-Stage Modelbased Grapheme-to-Phoneme Conversion

    Get PDF
    The precise conversion of arbitrary text into its  corresponding phoneme sequence (grapheme-to-phoneme or G2P conversion) is implemented in speech synthesis and recognition, pronunciation learning software, spoken term detection and spoken document retrieval systems. Because the quality of this module plays an important role in the performance of such systems and many problems regarding G2P conversion have been reported, we propose a novel two-stage model-based approach, which is implemented using an existing weighted finite-state transducer-based G2P conversion framework, to improve the performance of the G2P conversion model. The first-stage model is built for automatic conversion of words  to phonemes, while  the second-stage  model utilizes the input graphemes and output phonemes obtained from the first stage to determine the best final output phoneme sequence. Additionally, we designed new grapheme generation rules, which enable extra detail for the vowel and consonant graphemes appearing within a word. When compared with previous approaches, the evaluation results indicate that our approach using rules focusing on the vowel graphemes slightly improved the accuracy of the out-of-vocabulary dataset and consistently increased the accuracy of the in-vocabulary dataset

    Class-Level Spectral Features for Emotion Recognition

    Get PDF
    The most common approaches to automatic emotion recognition rely on utterance-level prosodic features. Recent studies have shown that utterance-level statistics of segmental spectral features also contain rich information about expressivity and emotion. In our work we introduce a more fine-grained yet robust set of spectral features: statistics of Mel-Frequency Cepstral Coefficients computed over three phoneme type classes of interest – stressed vowels, unstressed vowels and consonants in the utterance. We investigate performance of our features in the task of speaker-independent emotion recognition using two publicly available datasets. Our experimental results clearly indicate that indeed both the richer set of spectral features and the differentiation between phoneme type classes are beneficial for the task. Classification accuracies are consistently higher for our features compared to prosodic or utterance-level spectral features. Combination of our phoneme class features with prosodic features leads to even further improvement. Given the large number of class-level spectral features, we expected feature selection will improve results even further, but none of several selection methods led to clear gains. Further analyses reveal that spectral features computed from consonant regions of the utterance contain more information about emotion than either stressed or unstressed vowel features. We also explore how emotion recognition accuracy depends on utterance length. We show that, while there is no significant dependence for utterance-level prosodic features, accuracy of emotion recognition using class-level spectral features increases with the utterance length

    Do Infants Really Learn Phonetic Categories?

    Get PDF
    Early changes in infants’ ability to perceive native and nonnative speech sound contrasts are typically attributed to their developing knowledge of phonetic categories. We critically examine this hypothesis and argue that there is little direct evidence of category knowledge in infancy. We then propose an alternative account in which infants’ perception changes because they are learning a perceptual space that is appropriate to represent speech, without yet carving up that space into phonetic categories. If correct, this new account has substantial implications for understanding early language development

    Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input

    Get PDF
    International audienceBefore they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than non-native ones. For example, between 6-8 months and 10-12 months, infants learning American English get better at distinguishing English [ɹ] and [l], as in ‘rock’ vs ‘lock’, relative to infants learning Japanese. Influential accounts of this early phonetic learning phenomenon initially proposed that infants group sounds into native vowel- and consonant-like phonetic categories—like [ɹ] and [l] in English—through a statistical clustering mechanism dubbed ‘distributional learning’. The feasibility of this mechanism for learning phonetic categories has been challenged, however. Here we demonstrate that a distributional learning algorithm operating on naturalistic speech can predict early phonetic learning as observed in Japanese and American English infants, suggesting that infants might learn through distributional learning after all. We further show, however, that contrary to the original distributional learning proposal, our model learns units too brief and too fine-grained acoustically to correspond to phonetic categories. This challenges the influential idea that what infants learn are phonetic categories. More broadly, our work introduces a novel mechanism-driven approach to the study of early phonetic learning, together with a quantitative modeling framework that can handle realistic input. This allows, for the first time, accounts of early phonetic learning to be linked to concrete, systematic predictions regarding infants’ attunement

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding
    corecore