1,669 research outputs found

    Influence of pH on mechanical relaxations in high solids lm-pectin preparations

    Get PDF
    The influence of pH on the mechanical relaxation of LM-pectin in the presence of co-solute has been investigated by means of differential scanning calorimetry, ζ-potential measurements and small deformation dynamic oscillation in shear. pH was found to affect the conformational properties of the polyelectrolyte altering its structural behaviour. Cooling scans in the vicinity of the glass transition region revealed a remarkable change in the viscoelastic functions as the polyelectrolyte rearranges from extended (neutral pH) to compact conformations (acidic pH). This conformational rearrangement was experimentally observed to result in early vitrification at neutral pH values where dissociation of galacturonic acid residues takes place. Time-temperature superposition of the mechanical shift factors and theoretical modeling utilizing WLF kinetics confirmed the accelerated kinetics of glass transition in the extended pectin conformation at neutral pH. Determination of the relaxation spectra of the samples using spectral analysis of the master curves revealed that the relaxation of macromolecules occurs within ~0.1 s regardless of the solvent pH

    Polysaccharide Nanostructures

    Get PDF
    Polysaccharides are carbohydrate polymers where sugar units are linked together through glycosidic linkages. In living organisms polysaccharides are the structural polymers that provide support (e.g., cellulose in plants or chitin in arthropods) or the sources of energy for plant development (e.g., starch). Polysaccharides are routinely used in the food industry, most frequently as thickeners, stabilizers of dispersions (emulsions, foams) or structuring agents of water and air

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy

    Decoupling polymer, water and ion transport dynamics in ion-selective membranes for fuel cell applications

    Get PDF
    Ion conducting polymer membranes are designed for applications ranging from separation and dialysis, to energy conversion and storage technologies. A key application is in fuel cells, where the semi-permeable polymer membrane plays several roles. In a fuel cell, electrical power is generated from the electrochemical reaction between oxygen and hydrogen, catalysed by metal nanoparticles at the cathode and anode sites. The polymer membrane permits the selective transport of H+ or OH− to enable completion of the electrode half-reactions, plays a major role in the management of water that is necessary for the conduction process and is a product in the reactions, and provides a physical barrier against leakage across the cell. All of these functions must be optimised to enable high conduction efficiency under operational conditions, including high temperatures and aggressive chemical environments, while ensuring a long lifetime of the fuel cell. Polymer electrolyte membranes used in current devices only partially meet these stringent requirements, with ongoing research to assess and develop improved membranes for a more efficient operation and to help realise the transition to a hydrogen-fuelled energy economy. A key fundamental issue to achieving these goals is the need to understand and control the nature of the strongly coupled dynamical processes involving the polymer, water and ions, and their relationship to the conductivity, as a function of temperature and other environmental conditions. This can be achieved by using techniques that give access to information across a wide range of timescales. Given the complexity of the dynamical map in these systems, unravelling and disentangling the various processes involved can be accessed by applying the “serial decoupling” approach introduced by Angell and co-workers for ion-conducting glasses and polymers. Here we introduce this concept and propose how it can be applied to proton- and anion-conducting fuel cell membranes using two main classes of these materials as examples

    Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation

    Full text link
    We present results for transport properties (diffusion and viscosity) using computer simulations. Focus is made on a densified binary sodium disilicate 2SiO2_2-Na2_2O (NS2) liquid and on multicomponent magmatic liquids (MORB, basalt). In the NS2 liquid, results show that a certain number of anomalies appear when the system is densified: the usual diffusivity maxima/minima is found for the network-forming ions (Si,O) whereas the sodium atom displays three distinct r\'egimes for diffusion. Some of these features can be correlated with the obtained viscosity anomaly under pressure, the latter being be fairly well reproduced from the simulated diffusion constant. In model magmas (MORB liquid), we find a plateau followed by a continuous increase of the viscosity with pressure. Finally, having computed both diffusion and viscosity independently, we can discuss the validity of the Eyring equation for viscosity which relates diffusion and viscosity. It is shown that it can be considered as valid in melts with a high viscosity. On the overall, these results highlight the difficulty of establishing a firm relationship between dynamics, structure and thermodynamics in complex liquids.Comment: 13 pages, 8 figure

    Design principles for Bernal spirals and helices with tunable pitch

    Full text link
    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment
    corecore