38,486 research outputs found

    Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design

    Get PDF
    The energy modelling software tools commonly used for architectural purposes do not allow a straightforward real-time implementation within the architectural design programs. In addition, the surrounding exterior spaces of the building, including the inner courtyards, hardly present a specific treatment distinguishing these spaces from the general external temperature in the thermal simulations. This is a clear disadvantage when it comes to streamlining the design process in relation to the whole-building energy optimization. In this context, the present study aims to demonstrate the advantages of the FreeFem++ open source program for performing simulations in architectural environments. These simulations include microclimate tests that describe the interactions between a building architecture and its local exterior. The great potential of this mathematical tool can be realized through its complete system integration within CAD (Computer-Aided Design) software such as SketchUp or AutoCAD. In order to establish the suitability of FreeFem++ for the performance of simulations, the most widely employed energy simulation tools able to consider a proposed architectural geometry in a specific environment are compared. On the basis of this analysis, it can be concluded that FreeFem++ is the only program displaying the best features for the thermal performance simulation of these specific outdoor spaces, excluding the currently unavailable easy interaction with architectural drawing programs. The main contribution of this research is, in fact, the enhancement of FreeFem++ usability by proposing a simple intuitive method for the creation of building geometries and their respective meshing (pre-processing). FreeFem++ is also considered a tool for data analysis (post-processing) able to help engineers and architects with building energy-efficiency-related tasks

    Support for energy-oriented design in the Australian context

    Get PDF
    There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process

    Closing the loop of design and analysis: Parametric modelling tools for early decision support

    Get PDF
    There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines

    Extending the palette: an analysis of the heterogeneity of techniques for communicating space

    Get PDF
    This study offers an analysis of the increasing range of communication methods required by the emerging profession of the architectural technologist. It reviews the process of introducing methods of communication into the academic curriculum of undergraduate architectural technology students who have a need to select appropriate techniques in order to communicate to various stakeholders, design teams and clients. The paper reviews the integration of three-dimensional computer modelling technologies for the analysis and communication of proposed designs and considers the knowledge and skills which will be required to enable effective representation of increasingly complex buildings

    Convergence and interoperability of BIM with passive design principles

    Get PDF
    The Passive House Planning Package (PHPP) is a parametric modelling spreadsheet for building energy performance designed initially for the certification of buildings that meet passivhaus and EnerPHit refurbishment standards. However there is also a growing use of PHPP as a design stage tool to test strategic options for new build, hybrid and refurbishment development projects. As passive design principles follow a fabric-first approach to achieve a whole-house energy performance, the concept design stages are critical to success as decisions are made regarding orientation and heat-loss parameters arising out of the building geometry. In this context, PHPP is a trusted calculation tool that is comprehensive in the scope of factors and variables included to make it one of the most scientifically superior tools available. Its practical value is reinforced from a series of comparative studies which have undertaken triangulation in design stage energy assessments and PHPP has proved to be more accurate and more cost effective in practice than other standard modelling tools and methodologies such as IES and SAP. Where building information modelling (BIM) is a combination of geometric or spatial data generally found within a 3D architectural model and a connected document management system (DMS), PHPP data has largely been limited to the latter as one of the main instances in architecture and design modeling with a bias towards non-geometric data. This has changed with the introduction of designPH as an add-on tool for SketchUp and the BIM enabling in the recent versions of SketchUp. The paper is a case study in the practical application of the designPH tool for two separate UK based domestic design projects; one new build and one refurbishment; and the practical issues of interoperability with PHPP and BIM enabled software. The case studies review (1) the potential benefits of improved accuracy and quality control that address the technical performance gap between ‘design’ and ‘as-built’ standards; (2) the requirements regarding data collection, specifically the level of definition / detail (LoD) of data needed to describe the geometry and attributes of the existing structure and input climate data; (3) the technical limitations around ICT and software skills. Recommendations are made on the value of a simplified and integrated BIM workflow to benefit passive design projects. Critically the projects explore BIM interoperability using the addition of an energy domain to the IFC schema based on the input requirements for PHPP to make it more compatible with 3D modelling packages and achieve better integration between mathematical / parametric modelling of the energy performance and the building geometry

    BIM adoption and implementation for architectural practices

    Get PDF
    Severe issues about data acquisition and management arise during the design creation and development due to complexity, uncertainty and ambiguity. BIM (Building Information Modelling) is a tool for a team based lean design approach towards improved architectural practice across the supply chain. However, moving from a CAD (Computer Aided Design) approach to BIM (Building Information Modelling) represents a fundamental change for individual disciplines and the construction industry as a whole. Although BIM has been implemented by large practices, it is not widely used by SMEs (Small and Medium Sized Enterprises). Purpose: This paper aims to present a systematic approach for BIM implementation for Architectural SMEs at the organizational level Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and John McCall Architects (JMA) a SME based in Liverpool. The overall aim of the KTP is to develop lean design practice through BIM adoption. The BIM implementation approach uses a socio-technical view which does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The action research oriented qualitative and quantitative research is used for discovery, comparison, and experimentation as it provides ĂŻÂżÂœlearning by doingĂŻÂżÂœ. Findings: The strategic approach to BIM adoption incorporated people, process and technology equally and led to capacity building through the improvements in process, technological infrastructure and upskilling of JMA staff to attain efficiency gains and competitive advantages. Originality/Value: This paper introduces a systematic approach for BIM adoption based on the action research philosophy and demonstrates a roadmap for BIM adoption at the operational level for SME companie

    The role of virtual reality in built environment education

    Get PDF
    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of VR and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim, a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and VR into built environment subject areas. Although two-dimensional (2D) representations have been greatly accepted by built environment professions and education, 3D computer representations and VR applications, offering interactivity and immersiveness, are not yet widely accepted. The study attempts to understand the values and challenges of integrating visualisation technologies into built environment teaching and investigates tutors’ perceptions, opinions and concerns with respect to these technologies. The study reports on the integration process and considers how 3D computer modelling and VR technologies can combine with, and extend, the existing range of learning and teaching methods appropriate to different disciplines and programme areas

    Simulation, no problem, of course we offer this service! (observations on firms who have worked to make this true)

    Get PDF
    The paper focuses on the practical experiences of a number of professional firms striving to use simulation to deliver information of value to their clients. It exposes issues such as limitations in existing working practices and the mismatch between language routinely used by facilitators and trainees as well as their different expectations. The paper also discusses the differences observed between incremental implementation of simulation within practices and firms who wished to "jump in at the deep end". Lastly, it addresses the dilemma of how to move simulation tools into the already busy schedules and overloaded programmes of design practices successfully
    • 

    corecore