4,379 research outputs found

    (Anti)symmetric multivariate trigonometric functions and corresponding Fourier transforms

    Full text link
    Four families of special functions, depending on n variables, are studied. We call them symmetric and antisymmetric multivariate sine and cosine functions. They are given as determinants or antideterminants of matrices, whose matrix elements are sine or cosine functions of one variable each. These functions are eigenfunctions of the Laplace operator, satisfying specific conditions at the boundary of a certain domain F of the n-dimensional Euclidean space. Discrete and continuous orthogonality on F of the functions within each family, allows one to introduce symmetrized and antisymmetrized multivariate Fourier-like transforms, involving the symmetric and antisymmetric multivariate sine and cosine functions.Comment: 25 pages, no figures; LaTaX; corrected typo

    Two-dimensional symmetric and antisymmetric generalizations of exponential and cosine functions

    Full text link
    Properties of the four families of recently introduced special functions of two real variables, denoted here by E±E^\pm, and cos±\cos^\pm, are studied. The superscripts +^+ and ^- refer to the symmetric and antisymmetric functions respectively. The functions are considered in all details required for their exploitation in Fourier expansions of digital data, sampled on square grids of any density and for general position of the grid in the real plane relative to the lattice defined by the underlying group theory. Quality of continuous interpolation, resulting from the discrete expansions, is studied, exemplified and compared for some model functions.Comment: 22 pages, 10 figure

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor

    Three variable exponential functions of the alternating group

    Full text link
    New class of special functions of three real variables, based on the alternating subgroup of the permutation group S3S_3, is studied. These functions are used for Fourier-like expansion of digital data given on lattice of any density and general position. Such functions have only trivial analogs in one and two variables; a connection to the EE-functions of C3C_3 is shown. Continuous interpolation of the three dimensional data is studied and exemplified.Comment: 10 pages, 3 figure

    Signal Flow Graph Approach to Efficient DST I-IV Algorithms

    Get PDF
    In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n1)(n-1) points signal flow graph for DST-I and nn points signal flow graphs for DST II-IV

    Two dimensional symmetric and antisymmetric generalizations of sine functions

    Full text link
    Properties of 2-dimensional generalizations of sine functions that are symmetric or antisymmetric with respect to permutation of their two variables are described. It is shown that the functions are orthogonal when integrated over a finite region FF of the real Euclidean space, and that they are discretely orthogonal when summed up over a lattice of any density in FF. Decomposability of the products of functions into their sums is shown by explicitly decomposing products of all types. The formalism is set up for Fourier-like expansions of digital data over 2-dimensional lattices in FF. Continuous interpolation of digital data is studied.Comment: 12 pages, 5 figure

    Some extremal functions in Fourier analysis, II

    Full text link
    We obtain extremal majorants and minorants of exponential type for a class of even functions on R\R which includes logx\log |x| and xα|x|^\alpha, where 1<α<1-1 < \alpha < 1. We also give periodic versions of these results in which the majorants and minorants are trigonometric polynomials of bounded degree. As applications we obtain optimal estimates for certain Hermitian forms, which include discrete analogues of the one dimensional Hardy-Littlewood-Sobolev inequalities. A further application provides an Erd\"{o}s-Tur\'{a}n-type inequality that estimates the sup norm of algebraic polynomials on the unit disc in terms of power sums in the roots of the polynomials.Comment: 40 pages. Accepted for publication in Trans. Amer. Math. So
    corecore