23,966 research outputs found

    Precursors and Laggards: An Analysis of Semantic Temporal Relationships on a Blog Network

    Full text link
    We explore the hypothesis that it is possible to obtain information about the dynamics of a blog network by analysing the temporal relationships between blogs at a semantic level, and that this type of analysis adds to the knowledge that can be extracted by studying the network only at the structural level of URL links. We present an algorithm to automatically detect fine-grained discussion topics, characterized by n-grams and time intervals. We then propose a probabilistic model to estimate the temporal relationships that blogs have with one another. We define the precursor score of blog A in relation to blog B as the probability that A enters a new topic before B, discounting the effect created by asymmetric posting rates. Network-level metrics of precursor and laggard behavior are derived from these dyadic precursor score estimations. This model is used to analyze a network of French political blogs. The scores are compared to traditional link degree metrics. We obtain insights into the dynamics of topic participation on this network, as well as the relationship between precursor/laggard and linking behaviors. We validate and analyze results with the help of an expert on the French blogosphere. Finally, we propose possible applications to the improvement of search engine ranking algorithms

    Uncovering the Temporal Dynamics of Diffusion Networks

    Full text link
    Time plays an essential role in the diffusion of information, influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected -- but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest since it enables forecasting, influencing and retarding infections, broadly construed. To this end, we model diffusion processes as discrete networks of continuous temporal processes occurring at different rates. Given cascade data -- observed infection times of nodes -- we infer the edges of the global diffusion network and estimate the transmission rates of each edge that best explain the observed data. The optimization problem is convex. The model naturally (without heuristics) imposes sparse solutions and requires no parameter tuning. The problem decouples into a collection of independent smaller problems, thus scaling easily to networks on the order of hundreds of thousands of nodes. Experiments on real and synthetic data show that our algorithm both recovers the edges of diffusion networks and accurately estimates their transmission rates from cascade data.Comment: To appear in the 28th International Conference on Machine Learning (ICML), 2011. Website: http://www.stanford.edu/~manuelgr/netrate

    Searching for superspreaders of information in real-world social media

    Full text link
    A number of predictors have been suggested to detect the most influential spreaders of information in online social media across various domains such as Twitter or Facebook. In particular, degree, PageRank, k-core and other centralities have been adopted to rank the spreading capability of users in information dissemination media. So far, validation of the proposed predictors has been done by simulating the spreading dynamics rather than following real information flow in social networks. Consequently, only model-dependent contradictory results have been achieved so far for the best predictor. Here, we address this issue directly. We search for influential spreaders by following the real spreading dynamics in a wide range of networks. We find that the widely-used degree and PageRank fail in ranking users' influence. We find that the best spreaders are consistently located in the k-core across dissimilar social platforms such as Twitter, Facebook, Livejournal and scientific publishing in the American Physical Society. Furthermore, when the complete global network structure is unavailable, we find that the sum of the nearest neighbors' degree is a reliable local proxy for user's influence. Our analysis provides practical instructions for optimal design of strategies for "viral" information dissemination in relevant applications.Comment: 12 pages, 7 figure
    corecore