157,107 research outputs found

    The information bottleneck method

    Get PDF
    We define the relevant information in a signal x∈Xx\in X as being the information that this signal provides about another signal y\in \Y. Examples include the information that face images provide about the names of the people portrayed, or the information that speech sounds provide about the words spoken. Understanding the signal xx requires more than just predicting yy, it also requires specifying which features of \X play a role in the prediction. We formalize this problem as that of finding a short code for \X that preserves the maximum information about \Y. That is, we squeeze the information that \X provides about \Y through a `bottleneck' formed by a limited set of codewords \tX. This constrained optimization problem can be seen as a generalization of rate distortion theory in which the distortion measure d(x,\x) emerges from the joint statistics of \X and \Y. This approach yields an exact set of self consistent equations for the coding rules X \to \tX and \tX \to \Y. Solutions to these equations can be found by a convergent re-estimation method that generalizes the Blahut-Arimoto algorithm. Our variational principle provides a surprisingly rich framework for discussing a variety of problems in signal processing and learning, as will be described in detail elsewhere

    Objective Classification of Galaxy Spectra using the Information Bottleneck Method

    Get PDF
    A new method for classification of galaxy spectra is presented, based on a recently introduced information theoretical principle, the `Information Bottleneck'. For any desired number of classes, galaxies are classified such that the information content about the spectra is maximally preserved. The result is classes of galaxies with similar spectra, where the similarity is determined via a measure of information. We apply our method to approximately 6000 galaxy spectra from the ongoing 2dF redshift survey, and a mock-2dF catalogue produced by a Cold Dark Matter-based semi-analytic model of galaxy formation. We find a good match between the mean spectra of the classes found in the data and in the models. For the mock catalogue, we find that the classes produced by our algorithm form an intuitively sensible sequence in terms of physical properties such as colour, star formation activity, morphology, and internal velocity dispersion. We also show the correlation of the classes with the projections resulting from a Principal Component Analysis.Comment: submitted to MNRAS, 17 pages, Latex, with 14 figures embedde

    Decoding of Non-Binary LDPC Codes Using the Information Bottleneck Method

    Full text link
    Recently, a novel lookup table based decoding method for binary low-density parity-check codes has attracted considerable attention. In this approach, mutual-information maximizing lookup tables replace the conventional operations of the variable nodes and the check nodes in message passing decoding. Moreover, the exchanged messages are represented by integers with very small bit width. A machine learning framework termed the information bottleneck method is used to design the corresponding lookup tables. In this paper, we extend this decoding principle from binary to non-binary codes. This is not a straightforward extension, but requires a more sophisticated lookup table design to cope with the arithmetic in higher order Galois fields. Provided bit error rate simulations show that our proposed scheme outperforms the log-max decoding algorithm and operates close to sum-product decoding.Comment: This paper has been presented at IEEE International Conference on Communications (ICC'19) in Shangha

    Nonlinear Information Bottleneck

    Full text link
    Information bottleneck (IB) is a technique for extracting information in one random variable XX that is relevant for predicting another random variable YY. IB works by encoding XX in a compressed "bottleneck" random variable MM from which YY can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete XX and YY with small state spaces, and continuous XX and YY with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous XX and YY, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed "variational IB" method on several real-world datasets

    Geometric clustering using the information bottleneck method

    Get PDF
    We argue that K–means and deterministic annealing algorithms for geometric clustering can be derived from the more general Information Bottleneck approach. If we cluster the identities of data points to preserve information about their location, the set of optimal solutions is massively degenerate. But if we treat the equations that define the optimal solution as an iterative algorithm, then a set of “smooth ” initial conditions selects solutions with the desired geometrical properties. In addition to conceptual unification, we argue that this approach can be more efficient and robust than classic algorithms.

    Towards socially adaptive robots : A novel method for real time recognition of human-robot interaction styles

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ICHR.2008.4756004Automatically detecting different styles of play in human-robot interaction is a key challenge towards adaptive robots, i.e. robots that are able to regulate the interactions and adapt to different interaction styles of the robot users. In this paper we present a novel algorithm for pattern recognition in human-robot interaction, the Cascaded Information Bottleneck Method. We apply it to real-time autonomous recognition of human-robot interaction styles. This method uses an information theoretic approach and enables to progressively extract relevant information from time series. It relies on a cascade of bottlenecks, the bottlenecks being trained one after the other according to the existing Agglomerative Information Bottleneck Algorithm. We show that a structure for the bottleneck states along the cascade emerges and we introduce a measure to extrapolate unseen data. We apply this method to real-time recognition of Human-Robot Interaction Styles by a robot in a detailed case study. The algorithm has been implemented for real interactions between humans and a real robot. We demonstrate that the algorithm, which is designed to operate real time, is capable of classifying interaction styles, with a good accuracy and a very acceptable delay. Our future work will evaluate this method in scenarios on robot-assisted therapy for children with autism.Peer reviewe

    Unsupervised connectivity-based cortex parcellation using the information bottleneck method

    Get PDF
    In this dissertation, we embody an information-theoretic framework to compress and therefore cluster anatomical connectivity data that avoids many assumptions and drawbacks imposed by previous methods
    • 

    corecore