1,131 research outputs found

    Generalized roll-call model for the Shapley-Shubik index

    Get PDF
    In 1996 Dan Felsenthal and Mosh\'e Machover considered the following model. An assembly consisting of nn voters exercises roll-call. All n!n! possible orders in which the voters may be called are assumed to be equiprobable. The votes of each voter are independent with expectation 0<p<10<p<1 for an individual vote {\lq\lq}yea{\rq\rq}. For a given decision rule vv the \emph{pivotal} voter in a roll-call is the one whose vote finally decides the aggregated outcome. It turned out that the probability to be pivotal is equivalent to the Shapley-Shubik index. Here we give an easy combinatorial proof of this coincidence, further weaken the assumptions of the underlying model, and study generalizations to the case of more than two alternatives.Comment: 19 pages; we added a reference to an earlier proof of our main resul

    Bisemivalues for bicooperative games

    Get PDF
    We introduce bisemivalues for bicooperative games and we also provide an interesting characterization of this kind of values by means of weighting coefficients in a similar way as it was given for semivalues in the context of cooperative games. Moreover, the notion of induced bisemivalues on lower cardinalities also makes sense and an adaptation of Dragan’s recurrence formula is obtained. For the particular case of (p, q)-bisemivalues, a computational procedure in terms of the multilinear extension of the game is given.Peer ReviewedPostprint (author's final draft

    A value for j-cooperative games: some theoretical aspects and applications

    Get PDF
    This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in Handbook of the Shapley value on December 6, 2019, available online: https://www.crcpress.com/Handbook-of-the-Shapley-Value/Algaba-Fragnelli-Sanchez-Soriano/p/book/9780815374688A value that has all the ingredients to be a generalization of the Shapley value is proposed for a large class of games called j-cooperative games which are closely related to multi-choice games. When it is restricted to cooperative games, i.e. when j equals 2, it coincides with the Shapley value. An explicit formula in terms of some marginal contributions of the characteristic function is provided for the proposed value. Different arguments support it: (1) The value can be inferred from a natural probabilistic model. (2) An axiomatic characterization uniquely determines it. (3) The value is consistent in its particularization from j-cooperative games to j-simple games. This chapter also proposes various ways of calculating the value by giving an alternative expression that does not depend on the marginal contributions. This chapter shows how the technique of generating functions can be applied to determine such a value when the game is a weighted j-simple game. The chapter concludes by presenting several applications, among them the computation of the value for a proposed reform of the UNSC voting system.Peer ReviewedPostprint (author's final draft

    The Banzhaf value for cooperative and simple multichoice games

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Group Decision and Negotiation. The final authenticated version is available online at: https://doi.org/10.1007/s10726-019-09651-4.This article proposes a value which can be considered an extension of the Banzhaf value for cooperative games. The proposed value is defined on the class of j-cooperative games, i.e., games in which players choose among a finite set of ordered actions and the result depends only on these elections. If the output is binary, only two options are available, then j-cooperative games become j-simple games. The restriction of the value to j-simple games leads to a power index that can be considered an extension of the Banzhaf power index for simple games. The paper provides an axiomatic characterization for the value and the index which is closely related to the first axiomatization of the Banzhaf value and Banzhaf power index in the respective contexts of cooperative and simple games.Peer ReviewedPostprint (author's final draft

    Power theories for multi-choice organizations and political rules: Rank-order equivalence

    Get PDF
    AbstractVoting power theories measure the ability of voters to influence the outcome of an election under a given voting rule. In general, each theory gives a different evaluation of power, raising the question of their appropriateness, and calling for the need to identify classes of rules for which different theories agree. We study the ordinal equivalence of the generalizations of the classical power concepts–the influence relation, the Banzhaf power index, and the Shapley–Shubik power index–to multi-choice organizations and political rules. Under such rules, each voter chooses a level of support for a social goal from a finite list of options, and these individual choices are aggregated to determine the collective level of support for this goal. We show that the power theories analyzed do not always yield the same power relationships among voters. Thanks to necessary and/or sufficient conditions, we identify a large class of rules for which ordinal equivalence obtains. Furthermore, we prove that ordinal equivalence obtains for all linear rules allowing a fixed number of individual approval levels if and only if that number does not exceed three. Our findings generalize all the previous results on the ordinal equivalence of the classical power theories, and show that the condition of linearity found to be necessary and sufficient for ordinal equivalence to obtain when voters have at most three options to choose from is no longer sufficient when they can choose from a list of four or more options

    Axiomatisation of the Shapley value and power index for bi-cooperative games

    No full text
    URL des Cahiers : https://halshs.archives-ouvertes.fr/CAHIERS-MSECahiers de la Maison des Sciences Economiques 2006.23 - ISSN 1624-0340Bi-cooperative games have been introduced by Bilbao as a generalization of classical cooperative games, where each player can participate positively to the game (defender), negatively (defeater), or do not participate (abstentionist). In a voting situation (simple games), they coincide with ternary voting game of Felsenthal and Mochover, where each voter can vote in favor, against or abstain. In this paper, we propose a definition of value or solution concept for bi-cooperative games, close to the Shapley value, and we give an interpretation of this value in the framework of (ternary) simple games, in the spirit of Shapley-Shubik, using the notion of swing. Lastly, we compare our definition with the one of Felsenthal and Machover, based on the notion of ternary roll-call, and the Shapley value of multi-choice games proposed by Hsiao and Ragahavan.Les jeux bi-coopératifs ont été introduits par Bilbao comme une généralisation des jeux coopératifs classiques. Dans ces jeux, chaque joueur peut participer positivement au jeu (pour l'objectif), ou négativement (contre l'objectif), ou ne pas participer du tout. Dans une situation de vote, ces jeux coïncident avec les jeux de vote ternaires proposés par Felsenthal et Machover, dans lequels chaque votant peut voter en faveur, contre, ou s'abstenir. Dans ce papier, on propose une définition d'une valeur ou solution pour les jeux bi-coopératifs, dans l'esprit de la valeur de Shapley, et nous donnons une interprétation de cette valeur dans le cadre des jeux de vote ternaires, à la manière de Shapley-Shubik. Dans une dernière partie, nous comparons notre approche avec celle de Felsenthal et Machover, et celle de Hsiao et Raghavan qui ont proposé une valeur de Shapley pour les jeux multi-choix

    The men who weren’t even there: Legislative voting with absentees

    Get PDF

    Measuring voting power in convex policy spaces

    Full text link
    Classical power index analysis considers the individual's ability to influence the aggregated group decision by changing its own vote, where all decisions and votes are assumed to be binary. In many practical applications we have more options than either "yes" or "no". Here we generalize three important power indices to continuous convex policy spaces. This allows the analysis of a collection of economic problems like e.g. tax rates or spending that otherwise would not be covered in binary models.Comment: 31 pages, 9 table
    corecore