2,548 research outputs found

    The influence of visual feedback and gender dynamics on performance, perception and communication strategies in CSCW

    Get PDF
    The effects of gender in human communication and human-computer interaction are well-known, yet little is understood about how it influences performance in the complex, collaborative tasks in computer-mediated settings – referred to as Computer-Supported Collaborative Work (CSCW) – that are increasingly fundamental to the way in which people work. In such tasks, visual feedback about objects and events is particularly valuable because it facilitates joint reference and attention, and enables the monitoring of people’s actions and task progress. As such, software to support CSCW frequently provides shared visual workspace. While numerous studies describe and explain the impact of visual feedback in CSCW, research has not considered whether there are differences in how females and males use it, are aided by it, or are affected by its absence. To address these knowledge gaps, this study explores the effect of gender – and its interactions within pairs – in CSCW, with and without visual feedback. An experimental study is reported in which mixed-gender and same-gender pairs communicate to complete a collaborative navigation task, with one of the participants being under the impression that s/he is interacting with a robot (to avoid gender-related social preconceptions). The study analyses performance, perceptions and communication strategies. As predicted, there was a significant benefit associated with visual feedback in terms of language economy and efficiency. However, it was also found that visual feedback may be disruptive to task performance, because it relaxes the users’ precision criteria and inflates their assumptions of shared perspective. While no actual performance difference was found between males and females in the navigation task, females rated their own performance less positively than did males. In terms of communication strategies, males had a strong tendency to introduce novel vocabulary when communication problems occurred, while females exhibited more conservative behaviour. When visual feedback was removed, females adapted their strategies drastically and effectively, increasing the quality and specificity of the verbal interaction, repeating and re-using vocabulary, while the behaviour of males remained consistent. These results are used to produce design recommendations for CSCW systems that will suit users of both genders and enable effective collaboration

    The ideation compass: supporting interdisciplinary creative dialogues with real time visualization

    Get PDF
    This study presents the potential of live topic visualization in supporting creative dialogs during remote idea generation. We developed a novel Creativity Support Tool (CST) to explore the effects of the live topic visualization. The tool emphasizes the interdisciplinary knowledge background of participants. Using Natural Language Processing (NLP) and topic modeling, the tool provides users with a live visual mapping of the domains and topics being orally discussed. To understand the tool’s user perceived effects, we conducted evaluation sessions and interviews with participants (N = 10) from two different disciplinary backgrounds: design and bioscience. The findings show that live visualization of domains and topics supported self-reflection during individual and collaborative creativity and encouraged a balanced discussion, which can mitigate discipline-based fixation in ideation

    Methods of small group research

    Get PDF

    Developing and Facilitating Temporary Team Mental Models Through an Information-Sharing Recommender System

    Get PDF
    It is well understood that teams are essential and common in many aspects of life, both work and leisure. Due to the importance of teams, much research attention has focused on how to improve team processes and outcomes. Of particular interest are the cognitive aspects of teamwork including team mental models (TMMs). Among many other benefits, TMMs involve team members forming a compatible understanding of the task and team in order to more efficiently make decisions. This understanding is sometimes classified using four TMM domains: equipment (e.g., operating procedures), task (e.g., strategies), team interactions (e.g., interdependencies) and teammates (e.g., tendencies). Of particular interest to this dissertation is accelerating the development of teammate TMMs which include members understanding the knowledge, skills, attitudes, preferences, and tendencies of their teammates. An accurate teammate TMM allows teams to predict and account for the needs and behaviors of their teammates. Although much research has highlighted how the development of the four TMM domains can be supported, promoting the development of teammate TMMs is particularly challenging for a specific type of team: temporary teams. Temporary teams, in contrast to ongoing teams, involve unknown teammates, novel tasks, short task times (alternatively limited interactions), and members disbanding after completing their task. These teams are increasingly used by organizations as they can be agilely formed with individual members selected to accomplish a specific task. Such teams are commonly used in contexts such as film production, the military, emergency response, and software development, just to name a few. Importantly, although these teams benefit greatly from teammate TMMs due to the efficiencies gained in decision making while working under limited deadlines, the literature is severely limited in understanding how to support temporary teams in this way. As prior research has suggested, an opportunity to accelerate teammate TMM development on temporary teams is through the use of technology to selectively share teammate information to support these TMMs. However, this solution poses numerous privacy concerns. This dissertation uses four studies to create a foundational and thorough understanding of how recommender system technology can be used to promote teammate TMMs through information sharing while limiting privacy concerns. Study 1 takes a highly exploratory approach to set a foundation for future dissertation studies. This study investigates what information is perceived to be helpful for promoting teammate TMMs on actual temporary teams. Qualitative data suggests that sharing teammate information related to skills/preferences, conflict management styles, and work ethic/reliability is perceived as beneficial to supporting teammate TMMs. Also, this data provides a foundational understanding for what should be involved in information-sharing recommendations for promoting teammate TMMs. Quantitative results indicate that conflict management data is perceived as more helpful and appropriate to share than personality data. Study 2 investigates the presentation of these recommendations through the factors of anonymity and explanations. Although explanations did not improve trust or satisfaction in the system, providing recommendations associated with a specific teammate name significantly improved several team measures associated with TMMs for actual temporary teams compared to teams who received anonymous recommendations. This study also sheds light on what temporary team members perceive as the benefits to sharing this information and what they perceive as concerns to their privacy. Study 3 investigates how the group/team context and individual differences can influence disclosure behavior when using an information-sharing recommender system. Findings suggest that members of teams who are fully assessed as a team are more willing to unconditionally disclose personal information than members who are assessed as an individual or members who are mixed assessed as an individual and a team. The results also show how different individual differences and different information types are associated with disclosure behavior. Finally, Study 4 investigates how the occurrence and content of explanations can influence disclosure behavior and system perceptions of an information-sharing recommender system. Data from this study highlights how benefit explanations provided during disclosure can increase disclosure and explanations provided during recommendations can influence perceptions of trust competence. Meanwhile, benefit-related explanations can decrease privacy concerns. The aforementioned studies fill numerous research gaps relating to teamwork literature (i.e., TMMs and temporary teams) and recommender system research. In addition to contributions to these fields, this dissertation results in design recommendations that inform both the design of group recommender systems and the novel technology conceptualized through this dissertation, information-sharing recommender systems

    Structuring AI Teammate Communication: An Exploration of AI\u27s Communication Strategies in Human-AI Teams

    Get PDF
    In the past decades, artificial intelligence (AI) has been implemented in various domains to facilitate humans in their work, such as healthcare and the automotive industry. Such application of AI has led to increasing attention on human-AI teaming, where AI closely collaborates with humans as a teammate. AI as a teammate is expected to have the ability to coordinate with humans by sharing task-related information, predicting other teammates’ behaviors, and progressing team tasks accordingly. To complete these team activities effectively, AI teammates must communicate with humans, such as sharing updates and checking team progress. Even though communication is a core element of teamwork that helps to achieve effective coordination, how to design and structure human-AI communication in teaming environments still remains unclear. Given the context-dependent characteristics of communication, research on human-AI teaming communication needs to narrow down and focus on specific communication elements/components, such as the proactivity of communication and communication content. In doing so, this dissertation explores how AI teammates’ communication should be structured by modifying communication components through three studies, each of which details a critical component of effective AI communication: (1) communication proactivity, (2) communication content (explanation), and (3) communication approach (verbal vs. non-verbal). These studies provide insights into how AI teammates’ communication ii can be integrated into teamwork and how to design AI teammate communication in human-AI teaming. Study 1 explores an important communication element, communication proactivity, and its impact on team processes and team performance. Specifically, communication proactivity in this dissertation refers to whether an AI teammate proactively communicates with human teammates, i.e., proactively pushing information to human teammates. Experimental analysis shows that AI teammates’ proactive communication plays a crucial role in impacting human perceptions, such as perceived teammate performance and satisfaction with the teammate. Importantly, teams with a non-proactive communication AI teammate increase team performance more than teams with a proactive communication AI as the human and the AI collaborate more. This study identifies the positive impact of AI being proactive in communication at the initial stage of task coordination, as well as the potential need for AI’s flexibility in their communication proactivity (i.e., once human and AI teammates’ coordination pattern forms, AI can be non-proactive in communication). Study 2 examines communication content by focusing on AI’s explanation and its impact on human perceptions in teaming environments. Results indicate that AI’s explanation, as part of communication content, does not always positively impact human trust in human-AI teaming. Instead, the impact of AI’s explanations on human perceptions depends on specific collaboration scenarios. Specifically, AI’s explanations facilitate trust in the AI teammate when explaining why AI disobeys humans’ orders, but hinder trust when explaining why AI lies to humans. In addition, AI giving an explanation of why they ignored the human teammate’s injury was perceived to be more effective than AI not providing such an explanation. The findings emphasize the context-dependent characteristic of AI’s communication content with a focus on AI’s explanation of their actions. iii Study 3 investigates AI’s communication approach, which was manipulated as verbal vs. non-verbal communication. Results indicate that AI teammates’ verbal/nonverbal communication does not impact human trust in the AI teammate, but facilitates the maintenance of humans’ situation awareness in task coordination. In addition, AI with non-verbal communication is perceived as having lower communication quality and lower performance. Importantly, AI with non-verbal communication has better team performance in human-human-AI teams than human-AI-AI teams, whereas AI with verbal communication has better team performance in human-AI-AI teams than human-human-AI teams. These three studies together address multiple research gaps in human-AI team communication and provide a holistic view of the design and structure of AI’s communication by examining three specific aspects of communication in human-AI teaming. In addition, each study in this dissertation proposes practical design implications on AI’s communication in human-AI teams, which will assist AI designers and developers to create better AI teammates that facilitate humans in teaming environments

    Design Ltd.: Renovated Myths for the Development of Socially Embedded Technologies

    Full text link
    This paper argues that traditional and mainstream mythologies, which have been continually told within the Information Technology domain among designers and advocators of conceptual modelling since the 1960s in different fields of computing sciences, could now be renovated or substituted in the mould of more recent discourses about performativity, complexity and end-user creativity that have been constructed across different fields in the meanwhile. In the paper, it is submitted that these discourses could motivate IT professionals in undertaking alternative approaches toward the co-construction of socio-technical systems, i.e., social settings where humans cooperate to reach common goals by means of mediating computational tools. The authors advocate further discussion about and consolidation of some concepts in design research, design practice and more generally Information Technology (IT) development, like those of: task-artifact entanglement, universatility (sic) of End-User Development (EUD) environments, bricolant/bricoleur end-user, logic of bricolage, maieuta-designers (sic), and laissez-faire method to socio-technical construction. Points backing these and similar concepts are made to promote further discussion on the need to rethink the main assumptions underlying IT design and development some fifty years later the coming of age of software and modern IT in the organizational domain.Comment: This is the peer-unreviewed of a manuscript that is to appear in D. Randall, K. Schmidt, & V. Wulf (Eds.), Designing Socially Embedded Technologies: A European Challenge (2013, forthcoming) with the title "Building Socially Embedded Technologies: Implications on Design" within an EUSSET editorial initiative (www.eusset.eu/
    corecore