1,461 research outputs found

    Multimodal Neuroergonomic Approaches to Human Behavior and Cognitive Workload in Complex High-Risk Semantically Rich Environments: A Case Study of Local & En-Route Air Traffic Controllers

    Get PDF
    Fast-paced technology advancements have enabled us to create ecologically valid simulations of high risk, complex, and semantically rich environments in which human interaction and decision-making are the keys to increase system performance. These advances have improved our capabilities of exploring, quantifying, and measuring the underlying mechanisms that guide human behavior using sophisticated neuroergonomic devices; and in turn, improve human performance and reduce human errors. In this thesis, multimodal approaches consisted of a self-report analysis, eye-tracking analysis, and functional near-infrared spectroscopy analysis were used to investigate how veteran local & en-route air traffic controllers carry out their operational tasks. Furthermore, the correlations among the cognitive workload and physiological measures (i.e. eye movement characteristics and brain activities) were investigated. Combining the results of these experiments, we can observe that the multimodal approaches show promise on exploring the underlying mechanisms of workload and human interaction in a complex, high-risk, and semantically rich environment. This is because cognitive workload can be considered as a multidimensional construct and different devices or approaches might be more effective in sensing changes in either the task difficulty or complexity. The results can be used to find ways to better train the novices

    ATM automation: guidance on human technology integration

    Get PDF
    © Civil Aviation Authority 2016Human interaction with technology and automation is a key area of interest to industry and safety regulators alike. In February 2014, a joint CAA/industry workshop considered perspectives on present and future implementation of advanced automated systems. The conclusion was that whilst no additional regulation was necessary, guidance material for industry and regulators was required. Development of this guidance document was completed in 2015 by a working group consisting of CAA, UK industry, academia and industry associations (see Appendix B). This enabled a collaborative approach to be taken, and for regulatory, industry, and workforce perspectives to be collectively considered and addressed. The processes used in developing this guidance included: review of the themes identified from the February 2014 CAA/industry workshop1; review of academic papers, textbooks on automation, incidents and accidents involving automation; identification of key safety issues associated with automated systems; analysis of current and emerging ATM regulatory requirements and guidance material; presentation of emerging findings for critical review at UK and European aviation safety conferences. In December 2015, a workshop of senior management from project partner organisations reviewed the findings and proposals. EASA were briefed on the project before its commencement, and Eurocontrol contributed through membership of the Working Group.Final Published versio

    Definition of the 2005 flight deck environment

    Get PDF
    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development

    Human performance and strategies while solving an aircraft routing and sequencing problem: an experimental approach

    Get PDF
    As airport resources are stretched to meet increasing demand for services, effective use of ground infrastructure is increasingly critical for ensuring operational efficiency. Work in operations research has produced algorithms providing airport tower controllers with guidance on optimal timings and sequences for flight arrivals, departures, and ground movement. While such decision support systems have the potential to improve operational efficiency, they may also affect users’ mental workload, situation awareness, and task performance. This work sought to identify performance outcomes and strategies employed by human decision makers during an experimental airport ground movement control task with the goal of identifying opportunities for enhancing user-centered tower control decision support systems. To address this challenge, thirty novice participants solved a set of vehicle routing problems presented in the format of a game representing the airport ground movement task practiced by runway controllers. The games varied across two independent variables, network map layout (representing task complexity) and gameplay objective (representing task flexibility), and verbal protocol, visual protocol, task performance, workload, and task duration were collected as dependent variables. A logistic regression analysis revealed that gameplay objective and task duration significantly affected the likelihood of a participant identifying the optimal solution to a game, with the likelihood of an optimal solution increasing with longer task duration and in the less flexible objective condition. In addition, workload appeared unaffected by either independent variable, but verbal protocols and visual observations indicated that high-performing participants demonstrated a greater degree of planning and situation awareness. Through identifying human behavior during optimization problem solving, the work of tower control can be better understood, which, in turn, provides insights for developing decision support systems for ground movement management

    The Effect of Situation Presence Assessment Method (SPAM) on Air Traffic Control Students' Workload and Performance in High-Fidelity Simulations

    Get PDF
    abstract: This study examined the impact of Situation Presence Assessment Method (SPAM) administration on air traffic control (ATC) students’ task workload and performance in high-fidelity ATC simulations. ATC students performed high-fidelity en-route simulations in two conditions: baseline conditions (without SPAM questions) and SPAM conditions. The data collected show that while workload in the two conditions were not significantly different, there was a trend of higher mental workload in SPAM conditions than in baseline conditions. Performance immediately following SPAM questions was revealed to be poorer than that preceding the SPAM questions and that over the equivalent time periods in the baseline conditions. The results suggest that a "Ready" signal before a SPAM question may not be enough to eliminate the impact of SPAM administration on ATC students’ workload and performance in high-fidelity en-route simulations.Dissertation/ThesisMasters Thesis Technology 201

    How much is too much on monitoring tasks? Visual scan patterns of single air traffic controller performing multiple remote tower operations

    Get PDF
    The innovative concept of multiple remote tower operation (MRTO) is where a single air traffic controller (ATCO) provides air traffic services to two or more different airports from a geographically separated virtual Tower. Effective visual scanning by the air traffic controller is the main safety concern for human-computer interaction, as the aim of MRTO is a single controller performing air traffic management tasks originally carried out by up to four ATCOs, comprehensively supported by innovative technology. Thirty-two scenarios were recorded and analyzed using an eye tracking device to investigate the above safety concern and the effectiveness of multiple remote tower operations. The results demonstrated that ATCOs' visual scan patterns showed significant task related variation while performing different tasks and interacting with various interfaces on the controller's working position (CWP). ATCOs were supported by new display systems equipped with pan tilt zoom (PTZ) cameras allowing enhanced visual checking of airport surfaces and aircraft positions. Therefore, one ATCO could monitor and provide services for two airports simultaneously. The factors influencing visual attention include how the information is presented, the complexity of that information, and the characteristics of the operating environment. ATCO's attention distribution among display systems is the key human-computer interaction issue in single ATCO performing multiple monitoring tasks

    Air Traffic Controllers’ Occupational Stress and Performance in the Future Air Traffic Management

    Get PDF
    As demand for unmanned aerial vehicle (UAV) operations increases, it is vital to understand its effects on air traffic controllers and the safety of the national airspace system. This study’s primary purpose is to determine how UAVs that operate in controlled airspace would influence air traffic controllers’ occupational stress and performance. In a within-subject experimental research design, 24 participants sampled from a university’s undergraduate Air Traffic Management (ATM) program completed three different air traffic control (ATC) scenarios on an en route ATC simulation system. The degree of UAV automation and control were varied in each scenario. The participants’ stress levels, performance, and workload were measured with both objective and subjective measurements. Within-subjects ANOVA tests showed significant effects on the participants’ stress level, performance, and workload when automated UAVs were present in the scenario. Participants experienced increased workload, the highest level of stress, and carried out the worst performance when with controllable UAVs in the airspace. These findings can inform UAV integration into controlled airspace and future research into UAV automation and control and ATC management

    A Change in the Dark Room: The Effects of Human Factors and Cognitive Loading Issues for NextGen TRACON Air Traffic Controllers

    Get PDF
    By 2020 all aircraft in United States airspace must use ADS-B (Automatic Dependent Surveillance-Broadcast) Out. This is a key component of the Next Generation (NextGen) Air Transportation System, which marks the first time all aircraft will be tracked continuously using satellites instead of ground-based radar. Standard Terminal Automation Replacement System (STARS) in the Terminal Radar Approach Control (TRACON) is a primary NextGen upgrade where digitized automation/information surrounds STARS controllers while controlling aircraft. Applying the SHELL model, the authors analyze human factors changes affecting TRACON controllers from pre-STARS technology through NextGen technologies on performance. Results of an informal survey of STARS controllers assessed cognitive processing issues and indicates the greatest concern is with movements to view other displays and added time to re-engage STARS

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses

    Redesigning Airport Diagrams with Principles of Cognitive Psychology

    Get PDF
    The aviation community strives for air travel to be the safest form of transportation. The National Transportation Safety Board published a “Most Wanted” list to acknowledge the most threatening safety issues, and runway safety and runway incursions were at the top of their list. Furthermore, runway incursion statistics by the Federal Aviation Administration show that pilot deviations were the most common cause for runways incursions. Misunderstandings of airport diagrams may be one reason for pilot deviations. While navigating through airport taxiways, pilots refer to their airport diagrams as a map of the airport. Unfortunately, airport diagrams are not designed with the pilot in mind. This study attempted to redesign airport diagrams to incorporate principles of cognitive psychology. The redesigned airport diagrams included decreasing extra information, increasing overall size, and adding color. The study measured the participant’s situational awareness and deviations throughout six simulated taxiing tasks. The results were not statistically significant. The results showed evidence of a ceiling effect which may indicate that the taxiing tasks were too easy to show performance differences. This research issues should not be abandoned. However, future studies should include increased workload within the experimental tasks to create a more realistic cockpit environment
    • …
    corecore