33,902 research outputs found

    How citation boosts promote scientific paradigm shifts and Nobel Prizes

    Get PDF
    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain, how social influence comes about and why the value of goods depends so strongly on the attention they attract.Comment: 6 pages, 6 figure

    Citations: Indicators of Quality? The Impact Fallacy

    Get PDF
    We argue that citation is a composed indicator: short-term citations can be considered as currency at the research front, whereas long-term citations can contribute to the codification of knowledge claims into concept symbols. Knowledge claims at the research front are more likely to be transitory and are therefore problematic as indicators of quality. Citation impact studies focus on short-term citation, and therefore tend to measure not epistemic quality, but involvement in current discourses in which contributions are positioned by referencing. We explore this argument using three case studies: (1) citations of the journal Soziale Welt as an example of a venue that tends not to publish papers at a research front, unlike, for example, JACS; (2) Robert Merton as a concept symbol across theories of citation; and (3) the Multi-RPYS ("Multi-Referenced Publication Year Spectroscopy") of the journals Scientometrics, Gene, and Soziale Welt. We show empirically that the measurement of "quality" in terms of citations can further be qualified: short-term citation currency at the research front can be distinguished from longer-term processes of incorporation and codification of knowledge claims into bodies of knowledge. The recently introduced Multi-RPYS can be used to distinguish between short-term and long-term impacts.Comment: accepted for publication in Frontiers in Research Metrics and Analysis; doi: 10.3389/frma.2016.0000

    Tracing scientific influence

    Full text link
    Scientometrics is the field of quantitative studies of scholarly activity. It has been used for systematic studies of the fundamentals of scholarly practice as well as for evaluation purposes. Although advocated from the very beginning the use of scientometrics as an additional method for science history is still under explored. In this paper we show how a scientometric analysis can be used to shed light on the reception history of certain outstanding scholars. As a case, we look into citation patterns of a specific paper by the American sociologist Robert K. Merton.Comment: 25 pages LaTe

    Quantitative and empirical demonstration of the Matthew effect in a study of career longevity

    Get PDF
    The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: "For to all those who have, more will be given." Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamics of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew "rich get richer" effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his/her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect, and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals, and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience.Comment: 13 pages, 7 figures, 4 Tables; Revisions in response to critique and suggestions of referee

    A Review of Theory and Practice in Scientometrics

    Get PDF
    Scientometrics is the study of the quantitative aspects of the process of science as a communication system. It is centrally, but not only, concerned with the analysis of citations in the academic literature. In recent years it has come to play a major role in the measurement and evaluation of research performance. In this review we consider: the historical development of scientometrics, sources of citation data, citation metrics and the “laws" of scientometrics, normalisation, journal impact factors and other journal metrics, visualising and mapping science, evaluation and policy, and future developments

    Nonuniversal power law scaling in the probability distribution of scientific citations

    Full text link
    We develop a model for the distribution of scientific citations. The model involves a dual mechanism: in the direct mechanism, the author of a new paper finds an old paper A and cites it. In the indirect mechanism, the author of a new paper finds an old paper A only via the reference list of a newer intermediary paper B, which has previously cited A. By comparison to citation databases, we find that papers having few citations are cited mainly by the direct mechanism. Papers already having many citations ('classics') are cited mainly by the indirect mechanism. The indirect mechanism gives a power-law tail. The 'tipping point' at which a paper becomes a classic is about 21 citations for papers published in the Institute for Scientific Information (ISI) Web of Science database in 1981, 29 for Physical Review D papers published from 1975-1994, and 39 for all publications from a list of high h-index chemists assembled in 2007. The power-law exponent is not universal. Individuals who are highly cited have a systematically smaller exponent than individuals who are less cited.Comment: 7 pages, 3 figures, 2 table
    • …
    corecore