12,191 research outputs found

    Examining trade-offs between social, psychological, and energy potential of urban form

    Get PDF
    Urban planners are often challenged with the task of developing design solutions which must meet multiple, and often contradictory, criteria. In this paper, we investigated the trade-offs between social, psychological, and energy potential of the fundamental elements of urban form: the street network and the building massing. Since formal methods to evaluate urban form from the psychological and social point of view are not readily available, we developed a methodological framework to quantify these criteria as the first contribution in this paper. To evaluate the psychological potential, we conducted a three-tiered empirical study starting from real world environments and then abstracting them to virtual environments. In each context, the implicit (physiological) response and explicit (subjective) response of pedestrians were measured. To quantify the social potential, we developed a street network centrality-based measure of social accessibility. For the energy potential, we created an energy model to analyze the impact of pure geometric form on the energy demand of the building stock. The second contribution of this work is a method to identify distinct clusters of urban form and, for each, explore the trade-offs between the select design criteria. We applied this method to two case studies identifying nine types of urban form and their respective potential trade-offs, which are directly applicable for the assessment of strategic decisions regarding urban form during the early planning stages

    Setting intelligent city tiling strategies for urban shading simulations

    Get PDF
    Assessing accurately the solar potential of all building surfaces in cities, including shading and multiple reflections between buildings, is essential for urban energy modelling. However, since the number of surface interactions and radiation exchanges increase exponentially with the scale of the district, innovative computational strategies are needed, some of which will be introduced in the present work. They should hold the best compromise between result accuracy and computational efficiency, i.e. computational time and memory requirements. In this study, different approaches that may be used for the computation of urban solar irradiance in large areas are presented. Two concrete urban case studies of different densities have been used to compare and evaluate three different methods: the Perez Sky model, the Simplified Radiosity Algorithm and a new scene tiling method implemented in our urban simulation platform SimStadt, used for feasible estimations on a large scale. To quantify the influence of shading, the new concept of Urban Shading Ratio has been introduced and used for this evaluation process. In high density urban areas, this index may reach 60% for facades and 25% for roofs. Tiles of 500 m width and 200 m overlap are a minimum requirement in this case to compute solar irradiance with an acceptable accuracy. In medium density areas, tiles of 300 m width and 100 m overlap meet perfectly the accuracy requirements. In addition, the solar potential for various solar energy thresholds as well as the monthly variation of the Urban Shading Ratio have been quantified for both case studies, distinguishing between roofs and facades of different orientations

    Assessment of the photovoltaic potential at urban level based on 3D city models: A case study and new methodological approach

    Get PDF
    The use of 3D city models combined with simulation functionalities allows to quantify energy demand and renewable generation for a very large set of buildings. The scope of this paper is to determine the solar photovoltaic potential at an urban and regional scale using CityGML geometry descriptions of every building. An innovative urban simulation platform is used to calculate the PV potential of the Ludwigsburg County in south-west Germany, in which every building was simulated by using 3D city models. Both technical and economic potential (considering roof area and insolation thresholds) are investigated, as well as two different PV efficiency scenarios. In this way, it was possible to determine the fraction of the electricity demand that can be covered in each municipality and the whole region, deciding the best strategy, the profitability of the investments and determining optimal locations. Additionally, another important contribution is a literature review regarding the different methods of PV potential estimation and the available roof area reduction coefficients. An economic analysis and emission assessment has also been developed. The results of the study show that it is possible to achieve high annual rates of covered electricity demand in several municipalities for some of the considered scenarios, reaching even more than 100% in some cases. The use of all available roof space (technical potential) could cover 77% of the region’s electricity consumption and 56% as an economic potential with only high irradiance roofs considered. The proposed methodological approach should contribute valuably in helping policy-making processes and communicating the advantages of distributed generation and PV systems in buildings to regulators, researchers and the general public

    Analysis of a residential building energy consumption as “base model” in Tripoli, Lebanon

    Full text link
    The interest in energy performance of buildings in Lebanon has increased in the last few years. Indeed, many organizations are evaluating the commercial buildings’ energy performance in order to increase the commercial sector energy efficiency. Since residential buildings occupy 47% of the overall end-use energy consumption in Lebanon, therefore; the development of a rating methodology for residential energy performance should also be significant. This study reveals the results of a field survey of residential apartment buildings in the city of Tripoli. The survey focuses on the newly built-up extended zones of the city (Basateen El-Mina and Basateen Trablous), that are subject to the current building code. Based on a questionnaire and a monitoring survey, a building performance simulation model was created to reflect the average energy consumption characteristics for the most residential building accumulation. This benchmark model describes the energy use report for heating, cooling, lighting, domestic hot water systems and appliances with respect to the building’s layout, orientation and construction. The output data of the simulation will be compared with collected EDL (Electicite du Liban) bill. The aim of this study is to develop representative building energy data sets and benchmark models for the Lebanese residential sector specifically in the coastal zone area. Having a “base model “as a benchmark for existing residential buildings will form the basis of a research on specific building technologies and measurements of progress towards the Zero Energy Building goal

    Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review

    Get PDF
    The strict CO2 emission targets set to tackle the global climate change associated with greenhouse gas emission exerts so much pressure on our cities which contribute up to 75% of the global carbon dioxide emission level, with buildings being the largest contributor (UNEP, 2015). Premised on this fact, urban planners are required to implement proactive energy planning strategies not only to meet these targets but also ensure that future cities development is performed in a way that promotes energy-efficiency. This article gives an overview of the state-of-art of energy planning and forecasting approaches for aiding physical improvement strategies in the building sector. Unlike previous reviews, which have only addressed the strengths as well as weaknesses of some of the approaches while referring to some relevant examples from the literature, this article focuses on critically analysing more approaches namely; 2D GIS and 3DGIS (CityGML) based energy prediction approaches, based on their frequent intervention scale, applicability in the building life cycle, and conventional prediction process. This will be followed by unravelling the gaps and issues pertaining to the reviewed approaches. Finally, based on the identified problems, future research prospects are recommended

    Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions

    Get PDF
    Cool roof effectiveness in improving building thermal-energy performance is affected by different variables. In particular, roof insulation level and climate conditions are key parameters influencing cool roofs benefits and whole building energy performance. This work aims at assessing the role of cool roof in the optimum roof configuration, i.e., combination of solar reflectance capability and thermal insulation level, in terms of building energy performance in different climate conditions worldwide. To this aim, coupled dynamic thermal-energy simulation and optimization analysis is carried out. In detail, multi-dimensional optimization of combined building roof thermal insulation and solar reflectance is developed to minimize building annual energy consumption for heating-cooling. Results highlight how a high reflectance roof minimizes annual energy need for a small standard office building in the majority of considered climates. Moreover, building energy performance is more sensitive to roof solar reflectance than thermal insulation level, except for the coldest conditions. Therefore, for the selected building, the optimum roof typology presents high solar reflectance capability (0.8) and no/low insulation level (0.00-0.03 m), except for extremely hot or cold climate zones. Accordingly, this research shows how the classic approach of super-insulated buildings should be reframed for the office case toward truly environmentally friendly buildings.The work was partially funded by the Spanish government (RTI2018-093849-B-C31). This work was partially supported by ICREA under the ICREA Academia programme. Dr. Alvaro de Gracia has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia. This publication has emanated from research supported (in part) by Science Foundation Ireland (SFI) under the SFI Strategic Partnership Programme Grant Number SFI/15/SPP/E3125

    Urban building energy performance prediction and retrofit analysis using data-driven machine learning approach

    Get PDF
    Stakeholders such as urban planners and energy policymakers use building energy performance modeling and analysis to develop strategic sustainable energy plans with the aim of reducing energy consumption and emissions from the built environment. However, inconsistent energy data and the lack of scalable building models create a gap between building energy modeling and traditional planning practices. An alternative approach is to conduct a large-scale energy usage survey, which is time-consuming. Similarly, existing studies rely on traditional machine learning or statistical approaches for calculating large-scale energy performance. This paper proposes a solution that employs a data-driven machine learning approach to predict the energy performance of urban residential buildings, using both ensemble-based machine learning and end-use demand segregation methods. The proposed methodology consists of five steps: data collection, archetype development, physics-based parametric modeling, machine learning modeling, and urban building energy performance analysis. The devised methodology is tested on the Irish residential building stock and generates a synthetic building dataset of one million buildings through the parametric modeling of 19 identified vital variables for four residential building archetypes. As a part of the machine learning modeling process, the study implemented an end-use demand segregation method, including heating, lighting, equipment, photovoltaic, and hot water, to predict the energy performance of buildings at an urban scale. Furthermore, the model's performance is enhanced by employing an ensemble-based machine learning approach, achieving 91% accuracy compared to the traditional approach's 76%. Accurate prediction of building energy performance enables stakeholders, including energy policymakers and urban planners, to make informed decisions when planning large-scale retrofit measures

    Analysis of thermal field within an urban canyon with variable thermophysical characteristics of the building's walls.

    Get PDF
    In a typical urban configuration, a microclimatic analysis has been carried out. Using a CFD method, a N-S oriented urban street canyon, with a given H/W ratio, has been examined. The standard k–ε turbulence model has been used to simulate a three-dimensional flow field and to calculate the thermo-fluid dynamics parameters that characterize the street canyon. In this study has been analyzed the thermal flow field when the walls of the building change the properties of solar radiation absorption, in particular for α=0.2 and α=0.8. Solar radiation considered is that of 21/07 in Milan in two different hours: at 11:00 a.m. and at 02:00 p.m. The study shows the importance of the thermophysical properties of a wall, in the development of the thermal field and flow field. This is a very important topic, in terms of improvement of well-being and the quality of the air within the cities, through the choice of materials and colors of the facades of buildings.
    corecore