33,845 research outputs found

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Thin liquid water clouds: their importance and our challenge

    Get PDF
    Many clouds important to the Earth’s energy balance contain small amounts of liquid water, yet despite many improvements, large differences in retrievals of their liquid water amount and particle size still must be resolved

    Non-destructive soluble solids content determination for ‘Rocha’ Pear Based on VIS-SWNIR spectroscopy under ‘Real World’ sorting facility conditions

    Get PDF
    In this paper we report a method to determine the soluble solids content (SSC) of 'Rocha' pear (Pyrus communis L. cv. Rocha) based on their short-wave NIR reflectance spectra (500-1100 nm) measured in conditions similar to those found in packinghouse fruit sorting facilities. We obtained 3300 reflectance spectra from pears acquired from different lots, producers and with diverse storage times and ripening stages. The macroscopic properties of the pears, such as size, temperature and SSC were measured under controlled laboratory conditions. For the spectral analysis, we implemented a computational pipeline that incorporates multiple pre-processing techniques including a feature selection procedure, various multivariate regression models and three different validation strategies. This benchmark allowed us to find the best model/preproccesing procedure for SSC prediction from our data. From the several calibration models tested, we have found that Support Vector Machines provides the best predictions metrics with an RMSEP of around 0.82 ∘ Brix and 1.09 ∘ Brix for internal and external validation strategies respectively. The latter validation was implemented to assess the prediction accuracy of this calibration method under more 'real world-like' conditions. We also show that incorporating information about the fruit temperature and size to the calibration models improves SSC predictability. Our results indicate that the methodology presented here could be implemented in existing packinghouse facilities for single fruit SSC characterization.Funding Agency CEOT strategic project UID/Multi/00631/2019 project OtiCalFrut ALG-01-0247-FEDER-033652 Ideias em Caixa 2010, CAIXA GERAL DE DEPOSITOS Fundacao para a Ciencia e a Tecnologia (Ciencia)info:eu-repo/semantics/publishedVersio

    Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)

    Get PDF
    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potential of using multivariate NIR calibration models for seed classification was demonstrated using filled viable and non-viable seeds that could be separated with an accuracy of 98-99%. It was also shown that multivariate NIR calibration models gave low errors (0.7% and 1.9%) in prediction of seed moisture content for bulk seed and single seeds, respectively, using either NIR reflectance or transmittance spectroscopy. Genetic algorithms selected three to eight wavelength bands in the NIR region and these narrow bands gave about the same prediction of seed moisture content (0.6% and 1.7%) as using the whole NIR interval in the PLS regression models. The selected regions were simulated as NIR filters in OLS regression resulting in predictions of the same quality (0.7 % and 2.1%). This finding opens possibilities to apply NIR sensors in fast and simple spectrometers for the determination of seed moisture content. Near infrared (NIR) radiation interacts with overtones of vibrating bonds in polar molecules. The resulting spectra contain chemical and physical information. This offers good possibilities to measure seed-water interactions, but also to interpret processes within seeds. It is shown that seed-water interaction involves both transitions and changes mainly in covalent bonds of O-H, C-H, C=O and N-H emanating from ongoing physiological processes like seed respiration and protein metabolism. I propose that BPLS analysis that has orthonormal loadings and orthogonal scores giving the same predictions as using conventional PLS regression, should be used as a standard to harmonise the interpretation of NIR spectra

    Derivation of Land Surface Temperature from MODIS Data Using the General Split Window Technique

    Get PDF
    Fast Atmospheric Signature Code (FASCODE), a line-by-line radiative transfer programme, was used to simulate Moderate Resolution Imaging Spectroradiometer (MODIS) data at wavelengths 11.03 and 12.02 mm to ascertain how accurately the land surface temperature (LST) can be inferred, by the split window technique (SWT), for a wide range of atmospheric and terrestrial conditions. The approach starts from the Ulivieri algorithm, originally applied to Advanced Very High Resolution Radiometer (AVHRR) channels 4 and 5. This algorithm proved to be very accurate compared to several others and takes into account the atmospheric effects, in particular the water vapour column (WVC) amount and a non-unitary surface emissivity. Extended simulations allowed the determination of new coefficients of this algorithm appropriate to MODIS bands 31 and 32, using different atmospheric conditions. The algorithm was also improved by removing some of the hypothesis on which its original expression was based. This led to the addition of a new corrective term that took into account the interdependence between water vapour and non-unitary emissivity values and their effects on the retrieved surface temperature. The LST products were validated within 1K with in situ LSTs in 11 cases

    Thermal remote sensing of sea surface temperature

    Get PDF
    Sea surface temperature has been an important application of remote sensing from space for three decades. This chapter first describes well-established methods that have delivered valuable routine observations of sea surface temperature for meteorology and oceanography. Increasingly demanding requirements, often related to climate science, have highlighted some limitations of these ap-proaches. Practitioners have had to revisit techniques of estimation, of characterising uncertainty, and of validating observations—and even to reconsider the meaning(s) of “sea surface temperature”. The current understanding of these issues is reviewed, drawing attention to ongoing questions. Lastly, the prospect for thermal remote sens-ing of sea surface temperature over coming years is discussed

    Influence of soil water content on the thermal infrared emissivity of bare soils. Implication for land surface temperature determination.

    Get PDF
    The influence of soil water content in thermal infrared emissivity is a known fact but has been poorly studied in the past. A laboratory study for quantifying the dependence of emissivity on soil moisture was carried out. Six samples of surface horizons of different soil types were selected for the experiment. The gravimetric method was chosen for determining the soil moisture, whereas the emissivity was measured at different soil water contents using the two-lid variant of the box method. As a result, the study showed that emissivity increases from 1.7% to 16% when water content becomes higher, especially in sandy soils in the 8.29.2 mm range. Accordingly, a set of equations was derived to obtain emissivity from soil moisture at different spectral bands for the analyzed mineral soils. Moreover, results showed that the spectral ratio decreases with increasing soil water content. Finally, the study showed that systematic errors from 0.1 to 2 K can be caused by soil moisture influence on emissivity

    Wavelet-based filtration procedure for denoising the predicted CO2 waveforms in smart home within the Internet of Things

    Get PDF
    The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.Web of Science203art. no. 62

    Optimal Representation of Anuran Call Spectrum in Environmental Monitoring Systems Using Wireless Sensor Networks

    Get PDF
    The analysis and classiïŹcation of the sounds produced by certain animal species, notably anurans, have revealed these amphibians to be a potentially strong indicator of temperature ïŹ‚uctuations and therefore of the existence of climate change. Environmental monitoring systems using Wireless Sensor Networks are therefore of interest to obtain indicators of global warming. For the automatic classiïŹcation of the sounds recorded on such systems, the proper representation of the sound spectrum is essential since it contains the information required for cataloguing anuran calls. The present paper focuses on this process of feature extraction by exploring three alternatives: the standardized MPEG-7, the Filter Bank Energy (FBE), and the Mel Frequency Cepstral CoefïŹcients (MFCC). Moreover, various values for every option in the extraction of spectrum features have been considered. Throughout the paper, it is shown that representing the frame spectrum with pure FBE offers slightly worse results than using the MPEG-7 features. This performance can easily be increased, however, by rescaling the FBE in a double dimension: vertically, by taking the logarithm of the energies; and, horizontally, by applying mel scaling in the ïŹlter banks. On the other hand, representing the spectrum in the cepstral domain, as in MFCC, has shown additional marginal improvements in classiïŹcation performance.University of Seville: TelefĂłnica Chair "Intelligence Networks
    • 

    corecore