52,278 research outputs found

    Bell Inequalities with Auxiliary Communication

    Get PDF
    What is the communication cost of simulating the correlations produced by quantum theory? We generalize Bell inequalities to the setting of local realistic theories augmented by a fixed amount of classical communication. Suppose two parties choose one of M two-outcome measurements and exchange 1 bit of information. We present the complete set of inequalities for M = 2, and the complete set of inequalities for the joint correlation observable for M = 3. We find that correlations produced by quantum theory satisfy both of these sets of inequalities. One bit of communication is therefore sufficient to simulate quantum correlations in both of these scenarios.Comment: 5 page

    Contextual advantage for state discrimination

    Full text link
    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum error state discrimination. Namely, we identify quantitative limits on the success probability for minimum error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios, and demonstrate a tight connection between our minimum error state discrimination scenario and a Bell scenario.Comment: 18 pages, 9 figure

    Quantum logarithmic Sobolev inequalities and rapid mixing

    Get PDF
    A family of logarithmic Sobolev inequalities on finite dimensional quantum state spaces is introduced. The framework of non-commutative \bL_p-spaces is reviewed and the relationship between quantum logarithmic Sobolev inequalities and the hypercontractivity of quantum semigroups is discussed. This relationship is central for the derivation of lower bounds for the logarithmic Sobolev (LS) constants. Essential results for the family of inequalities are proved, and we show an upper bound to the generalized LS constant in terms of the spectral gap of the generator of the semigroup. These inequalities provide a framework for the derivation of improved bounds on the convergence time of quantum dynamical semigroups, when the LS constant and the spectral gap are of the same order. Convergence bounds on finite dimensional state spaces are particularly relevant for the field of quantum information theory. We provide a number of examples, where improved bounds on the mixing time of several semigroups are obtained; including the depolarizing semigroup and quantum expanders.Comment: Updated manuscript, 30 pages, no figure

    A Resource Framework for Quantum Shannon Theory

    Full text link
    Quantum Shannon theory is loosely defined as a collection of coding theorems, such as classical and quantum source compression, noisy channel coding theorems, entanglement distillation, etc., which characterize asymptotic properties of quantum and classical channels and states. In this paper we advocate a unified approach to an important class of problems in quantum Shannon theory, consisting of those that are bipartite, unidirectional and memoryless. We formalize two principles that have long been tacitly understood. First, we describe how the Church of the larger Hilbert space allows us to move flexibly between states, channels, ensembles and their purifications. Second, we introduce finite and asymptotic (quantum) information processing resources as the basic objects of quantum Shannon theory and recast the protocols used in direct coding theorems as inequalities between resources. We develop the rules of a resource calculus which allows us to manipulate and combine resource inequalities. This framework simplifies many coding theorem proofs and provides structural insights into the logical dependencies among coding theorems. We review the above-mentioned basic coding results and show how a subset of them can be unified into a family of related resource inequalities. Finally, we use this family to find optimal trade-off curves for all protocols involving one noisy quantum resource and two noiseless ones.Comment: 60 page
    corecore