14 research outputs found

    Convexities related to path properties on graphs; a unified approach

    Get PDF
    Path properties, such as 'geodesic', 'induced', 'all paths' define a convexity on a connected graph. The general notion of path property, introduced in this paper, gives rise to a comprehensive survey of results obtained by different authors for a variety of path properties, together with a number of new results. We pay special attention to convexities defined by path properties on graph products and the classical convexity invariants, such as the Caratheodory, Helly and Radon numbers in relation with graph invariants, such as clique numbers and other graph properties.

    The induced path function, monotonicity and betweenness

    Get PDF
    The induced path function J(u,v)J(u, v) of a graph consists of the set of all vertices lying on the induced paths between vertices uu and vv. This function is a special instance of a transit function. The function JJ satisfies betweenness if winJ(u,v)w \\in J(u, v) implies unotinJ(w,v)u \\notin J(w, v) and xinJ(u,v)x \\in J(u, v) implies J(u,xsubseteqJ(u,v)J(u, x \\subseteq J(u, v), and it is monotone if x,yinJ(u,v)x, y \\in J(u, v) implies J(x,y)subseteqJ(u,v)J(x, y) \\subseteq J(u, v). The induced path function of a connected graph satisfying the betweenness and monotone axioms are characterized by transit axioms

    Convexities related to path properties on graphs

    Get PDF
    AbstractA feasible family of paths in a connected graph G is a family that contains at least one path between any pair of vertices in G. Any feasible path family defines a convexity on G. Well-known instances are: the geodesics, the induced paths, and all paths. We propose a more general approach for such ‘path properties’. We survey a number of results from this perspective, and present a number of new results. We focus on the behaviour of such convexities on the Cartesian product of graphs and on the classical convexity invariants, such as the Carathéodory, Helly and Radon numbers in relation with graph invariants, such as the clique number and other graph properties

    Axiomatic characterization of the interval function of a graph

    Get PDF
    A fundamental notion in metric graph theory is that of the interval function I : V × V → 2V – {∅} of a (finite) connected graph G = (V,E), where I(u,v) = { w | d(u,w) + d(w,v) = d(u,v) } is the interval between u and v. An obvious question is whether I can be characterized in a nice way amongst all functions F : V × V -> 2V – {∅}. This was done in [13, 14, 16] by axioms in terms of properties of the functions F. The authors of the present paper, in the conviction that characterizing the interval function belongs to the central questions of metric graph theory, return here to this result again. In this characterization the set of axioms consists of five simple, and obviously necessary, axioms, already presented in [9], plus two more complicated axioms. The question arises whether the last two axioms are really necessary in the form given or whether simpler axioms would do the trick. This question turns out to be non-trivial. The aim of this paper is to show that these two supplementary axioms are optimal in the following sense. The functions satisfying only the five simple axioms are studied extensively. Then the obstructions are pinpointed why such functions may not be the interval function of some connected graph. It turns out that these obstructions occur precisely when either one of the supplementary axioms is not satisfied. It is also shown that each of these supplementary axioms is independent of the other six axioms. The presented way of proving the characterizing theorem (Theorem 3 here) allows us to find two new separate ``intermediate'' results (Theorems 1 and 2). In addition some new characterizations of modular and median graphs are presented. As shown in the last section the results of this paper could provide a new perspective on finite connected graphs

    A Characterization of Uniquely Representable Graphs

    Get PDF
    The betweenness structure of a finite metric space M =(X, d) is a pair ℬ (M)=(X, βM) where βM is the so-called betweenness relation of M that consists of point triplets (x, y, z) such that d(x, z)= d(x, y)+ d(y, z). The underlying graph of a betweenness structure ℬ =(X, β)isthe simple graph G(ℬ)=(X, E) where the edges are pairs of distinct points with no third point between them. A connected graph G is uniquely representable if there exists a unique metric betweenness structure with underlying graph G. It was implied by previous works that trees are uniquely representable. In this paper, we give a characterization of uniquely representable graphs by showing that they are exactly the block graphs. Further, we prove that two related classes of graphs coincide with the class of block graphs and the class of distance-hereditary graphs, respectively. We show that our results hold not only for metric but also for almost-metric betweenness structures. © 2021 Péter G.N. Szabó
    corecore