71 research outputs found

    A Mechanical Verification of the Independence of Tarski's Euclidean Axiom

    No full text
    This thesis describes the mechanization of Tarski's axioms of plane geometry in the proof verification program Isabelle. The real Cartesian plane is mechanically verified to be a model of Tarski's axioms, thus verifying the consistency of the axiom system. The Klein–Beltrami model of the hyperbolic plane is also defined in Isabelle; in order to achieve this, the projective plane is defined and several theorems about it are proven. The Klein–Beltrami model is then shown in Isabelle to be a model of all of Tarski's axioms except his Euclidean axiom, thus mechanically verifying the independence of the Euclidean axiom — the primary goal of this project. For some of Tarski's axioms, only an insufficient or an inconvenient published proof was found for the theorem that states that the Klein–Beltrami model satisfies the axiom; in these cases, alternative proofs were devised and mechanically verified. These proofs are described in this thesis — most notably, the proof that the model satisfies the axiom of segment construction, and the proof that it satisfies the five-segments axiom. The proof that the model satisfies the upper 2-dimensional axiom also uses some of the lemmas that were used to prove that the model satisfies the five-segments axiom

    A Mechanical Verification of the Independence of Tarski's Euclidean Axiom

    No full text
    This thesis describes the mechanization of Tarski's axioms of plane geometry in the proof verification program Isabelle. The real Cartesian plane is mechanically verified to be a model of Tarski's axioms, thus verifying the consistency of the axiom system. The Klein–Beltrami model of the hyperbolic plane is also defined in Isabelle; in order to achieve this, the projective plane is defined and several theorems about it are proven. The Klein–Beltrami model is then shown in Isabelle to be a model of all of Tarski's axioms except his Euclidean axiom, thus mechanically verifying the independence of the Euclidean axiom — the primary goal of this project. For some of Tarski's axioms, only an insufficient or an inconvenient published proof was found for the theorem that states that the Klein–Beltrami model satisfies the axiom; in these cases, alternative proofs were devised and mechanically verified. These proofs are described in this thesis — most notably, the proof that the model satisfies the axiom of segment construction, and the proof that it satisfies the five-segments axiom. The proof that the model satisfies the upper 2-dimensional axiom also uses some of the lemmas that were used to prove that the model satisfies the five-segments axiom

    The Principle Of Excluded Middle Then And Now: Aristotle And Principia Mathematica

    Get PDF
    The prevailing truth-functional logic of the twentieth century, it is argued, is incapable of expressing the subtlety and richness of Aristotle's Principle of Excluded Middle, and hence cannot but misinterpret it. Furthermore, the manner in which truth-functional logic expresses its own Principle of Excluded Middle is less than satisfactory in its application to mathematics. Finally, there are glimpses of the "realism" which is the metaphysics demanded by twentieth century logic, with the remarkable consequent that Classical logic is a particularly inept instrument to analyze those philosophies which stand opposed to the "realism" it demands

    The axiom of choice and the paradoxes of the sphere.

    Full text link
    Thesis (M.A.)--Boston UniversityThe Axiom of Choice is stated in the following form: For every set Z whose elements are sets A, non-empty and mutually disjoint, there exists at least one set B having one and only one element from each of the sets A belonging to Z. Examples are given to show the use of the Axiom of Choice and also to show when it is not needed. Two other fundamental terms are defined, namely "congruence" and "equivalence by finite decomposition", and examples are given. Congruence is defined as follows: The sets of points A and B are congruent: A B, if there exists a function f, which transforms A into B in a one-to-one manner such that if a1 and a2 are two arbitrary points of the set A, then d(a1, a2)=d[f(a1), f(a2)]; d(a, b) is a real number called the distance between the points a and b. The following definition of equivalence by finite decomposition is given: Two sets of points, A and B are equivalent by finite decomposition, Af=B, provided sets A1 , A2, ..., An and B1, B2, ..., Bn exist with the following properties: (1) A=A1+A2+...+An B=B1+B2+...+Bn (2) Aj • Ak=Bj • Bk=0 1 ≤ j < k ≤ n (3) Aj≅Bj 1 ≤ j ≤ n An historic measure problem is discussed briefly. Two paradoxes of the sphere, the Hausdorff Paradox and the Banach and Tarski Paradox are stated and discussed in detail. The Hausdorff Paradox reads as follows: The surface K of the sphere can be decomposed into four disjoint subsets A, B, C, and Q such that (1) K=A+B+C+Q and (2) A≅B≅C, A≅B+C where Q is denumerable. A refinement of this Paradox is introduced in which the denumerable set Q is eliminated. The Banach and Tarski Paradox states that in any Euclidean space of dimension n≥3, two arbitrary sets, bounded and containing interior points, are equivalent by finite decomposition. Various refinements of this paradox are noted. It is observed that the proofs of both paradoxes require the aid of the Axiom of Choice. The controversy over the Axiom of Choice is discussed at length. A wide range of viewpoints is studied, ranging from total rejection by the intuitionists to practically complete acceptance of the axiom. Seven theorems on cardinal numbers that are equivalent to the Axiom of Choice are listed. Six examples of theorems which require the aid of the Axiom of Choice in their proof are given. Based on the results of Hausdorff, Banach and Tarski, and Robinson, three specific questions are answered as follows : with the aid of the Axiom of Choice (1) the surface of a sphere can be decomposed into subsets in such a way that a half and a third of the surface may be congruent to each other. (2) A solid sphere of fixed radius can be decomposed into a finite number of pieces and these pieces can be reassembled to form two solid spheres of the given radius. (3) The minimum number of pieces required in the above problem is five. It is concluded that the general question, "Should the Axiom of Choice be accepted or rejected" is unanswerable at the present time. It is pointed out that the problem of existence and t he paradoxes that result from the axiom are major arguments against its use. However, the axiom simplifies many parts of set theory, analysis, and topology. The fact that Godel has proved the Axiom of Choice consistent with other generally accepted axioms of set theory, provided they are consistent with one another, is a second major point in its favor. Finally, Appendix I contains some statements equivalent to the Axiom of Choice, and Appendix II contains some importru1t theoren1s of Banach and Tarski

    The continuum hypothesis : independence and truth-value

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Philosophy, 1974.MIT Humanities Library copy: issued in two vols.Leaf number 84 used twice. Also issued as a two-volume set.Includes bibliographical references (leaves 217-258).by Thomas S. Weston.Ph.D

    INFORMATION-THEORETIC LOGIC

    Get PDF
    Information-theoretic approaches to formal logic analyse the "common intuitive" concept of propositional implication (or argumental validity) in terms of information content of propositions and sets of propositions: one given proposition implies a second if the former contains all of the information contained by the latter; an argument is valid if the conclusion contains no information beyond that of the premise-set. This paper locates information-theoretic approaches historically, philosophically and pragmatically. Advantages and disadvantages are identified by examining such approaches in themselves and by contrasting them with standard transformation-theoretic approaches. Transformation-theoretic approaches analyse validity (and thus implication) in terms of transformations that map one argument onto another: a given argument is valid if no transformation carries it onto an argument with all true premises and false conclusion. Model-theoretic, set-theoretic, and substitution-theoretic approaches, which dominate current literature, can be construed as transformation-theoretic, as can the so-called possible-worlds approaches. Ontic and epistemic presuppositions of both types of approaches are considered. Attention is given to the question of whether our historically cumulative experience applying logic is better explained from a purely information-theoretic perspective or from a purely transformation-theoretic perspective or whether apparent conflicts between the two types of approaches need to be reconciled in order to forge a new type of approach that recognizes their basic complementarity

    Existence, knowledge & truth in mathematics

    Get PDF
    This thesis offers an overview of some current work in the philosophy of mathematics, in particular of work on the metaphysical, epistemological, and semantic problems associated with mathematics, and it also offers a theory about what type of entities numbers are. Starting with a brief look at the historical and philosophical background to the problems of knowledge of mathematical facts and entities, the thesis then tackles in depth, and ultimately rejects as flawed, the work in this area of Hartry Field, Penelope Maddy, Jonathan Lowe, John Bigelow, and also some aspects of the work of Philip Kitcher and David Armstrong. Rejecting both nominalism and physicalism, but accepting accounts from Bigelow and Armstrong that numbers can be construed as relations, the view taken in this work is that mathematical objects, numbers in particular, are universals, and as such are mind dependent entities. It is important to the arguments leading to this conception of mathematical objects, that there is a notion of aspectual seeing involved in mathematical conception. Another important feature incorporated is the notion, derived from Anscombe, of an intentional object. This study finishes by sketching what appears to be a fruitful line of enquiry with some significant advantages over the other accounts discussed. The line taken is that the natural numbers are mind dependent intentional relations holding between intentional individuals, and that other classes of number - the rationals, the reals, and so on - are mind dependent intentional relations holding between other intentional relations. The distinction in type between the natural numbers and the rest, is the intuitive one that is drawn naturally in language between the objects referred to by the so-called count nouns, and the objects referred to by the so-called mass nouns

    Dynamic Games under Bounded Rationality

    Get PDF
    I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) under given state the strategy space is a chain-complete partially ordered set; (2) the response function satisfies certain order-theoretic property; (3) the evolution of economic system is described by the Dynamical System defined by iterations of the response function; (4) the existence of equilibrium is guaranteed by fixed point theorems for ordered structures. If the preference happens to be represented by a utility function and the response was derived from utility maximization, then the equilibrium defined by fixed points of the response function will be the same as Nash equilibrium. This preference-response framework liberates economics from the utility concept, and constitutes a synthesis between normal-form and extensive-form games. And the essential advantages of our preference-response approach was secured by successfully resolving some long-standing paradoxes in classical theory, yielding straightforward ways out of the impossibility theorem of Arrow and Sen, the Keynesian beauty contest, the Bertrand Paradox, and the backward induction paradox. These applications have certain characteristics in common: they all involve important modifications in the concept of perfect rationality

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki
    • …
    corecore