37 research outputs found

    On the Performance Evaluation of High-Speed Transport Protocols

    Get PDF
    As high-speed networks with large bandwidth delay products (BDP) become more common, high-speed transport protocols must be developed that perform well in these contexts. TCP has limitations in high BDP networks. A number of high-speed TCP proposals have emerged, including BIC TCP, High Speed TCP, and H-TCP. XCP is an intraprotocol communication mechanism that promises even greater performance by providing explicit feedback from routers about congestion. It requires changes to routers and end hosts, though, whereas the other experimental protocols only require changes to an end host. We evaluated the performance ofXCP against BIC TCP, High Speed TCP, H-TCP, and . NewReno TCP. We found that in a controlled environment, XCP gave much better performance than the other TCPs. XCP was sensitive to misconfiguration and environmental factors, though, and was more difficult to deploy. More work is required to make XCP more stable. The other TCPs did not perform better than NewReno TCP but show promise, as most performed almost as well as NewReno TCP

    Networking Mechanisms for Delay-Sensitive Applications

    Get PDF
    The diversity of applications served by the explosively growing Internet is increasing. In particular, applications that are sensitive to end-to-end packet delays become more common and include telephony, video conferencing, and networked games. While the single best-effort service of the current Internet favors throughput-greedy traffic by equipping congested links with large buffers, long queuing at the congested links hurts the delay-sensitive applications. Furthermore, while numerous alternative architectures have been proposed to offer diverse network services, the innovative alternatives failed to gain widespread end-to-end deployment. This dissertation explores different networking mechanisms for supporting low queueing delay required by delay-sensitive applications. In particular, it considers two different approaches. The first one assumes employing congestion control protocols for the traffic generated by the considered class of applications. The second approach relies on the router operation only and does not require support from end hosts

    Enabling a Low-delay Internet Service via Built-in Performance Incentives

    Get PDF
    The single best-effort service of the Internet struggles to accommodate divergent needs of different distributed applications. Numerous alternative network architectures have been proposed to offer diversified network services. These innovative solutions failed to gain wide deployment primarily due to economic and legacy issues rather than technical shortcomings. Our paper presents a new simple paradigm for network service differentiation that accounts explicitly for the multiplicity of Internet service providers and users as well as their economic interests in environments with partly deployed new services. Our key idea is to base the service differentiation on performance itself, rather than price. We design RD (Rate-Delay) network services that give a user an opportunity to choose between a higher transmission rate or low queuing delay at a congested network link. To support the two services, an RD router maintains two queues per output link and achieves the intended ratedelay differentiation through simple link scheduling and dynamic buffer sizing. Our extensive evaluation of the RD network services reports their performance, deployability, and security properties

    Congestion control schemes for single and parallel TCP flows in high bandwidth-delay product networks

    Get PDF
    In this work, we focus on congestion control mechanisms in Transmission Control Protocol (TCP) for emerging very-high bandwidth-delay product networks and suggest several congestion control schemes for parallel and single-flow TCP. Recently, several high-speed TCP proposals have been suggested to overcome the limited throughput achievable by single-flow TCP by modifying its congestion control mechanisms. In the meantime, users overcome the throughput limitations in high bandwidth-delay product networks by using multiple parallel TCP flows, without modifying TCP itself. However, the evident lack of fairness between the high-speed TCP proposals (or parallel TCP) and existing standard TCP has increasingly become an issue. In many scenarios where flows require high throughput, such as grid computing or content distribution networks, often multiple connections go to the same or nearby destinations and tend to share long portions of paths (and bottlenecks). In such cases benefits can be gained by sharing congestion information. To take advantage of this additional information, we first propose a collaborative congestion control scheme for parallel TCP flows. Although the use of parallel TCP flows is an easy and effective way for reliable high-speed data transfer, parallel TCP flows are inherently unfair with respect to single TCP flows. In this thesis we propose, implement, and evaluate a natural extension for aggregated aggressiveness control in parallel TCP flows. To improve the effectiveness of single TCP flows over high bandwidth-delay product networks without causing fairness problems, we suggest a new TCP congestion control scheme that effectively and fairly utilizes high bandwidth-delay product networks by adaptively controlling the flowÂs aggressiveness according to network situations using a competition detection mechanism. We argue that competition detection is more appropriate than congestion detection or bandwidth estimation. We further extend the adaptive aggressiveness control mechanism and the competition detection mechanism from single flows to parallel flows. In this way we achieve adaptive aggregated aggressiveness control. Our evaluations show that the resulting implementation is effective and fair. As a result, we show that single or parallel TCP flows in end-hosts can achieve high performance over emerging high bandwidth-delay product networks without requiring special support from networks or modifications to receivers

    Scalable Socket Buffer Tuning for High-Performance Web Servers

    Get PDF
    Although many research efforts have been devoted to network congestion in the face of an increase in the Internet traffic, there is little recent discussion on performance improvements for endhosts. In this paper, we propose a new architecture, called Scalable Socket Buffer Tuning (SSBT), to provide high-performance and fair service for many TCP connections at Internet endhosts. SSBT has two major features. One ist to reduce the number..

    Moving toward the intra-protocol de-ossification of TCP in mobile networks: Start-up and mobility

    Get PDF
    182 p.El uso de las redes móviles de banda ancha ha aumentado significativamente los últimos años y se espera un crecimiento aún mayor con la inclusión de las futuras capacidades 5G. 5G proporcionará unas velocidades de transmisión y reducidos retardos nunca antes vistos. Sin embargo, la posibilidad de alcanzar las mencionadas cuotas está limitada por la gestión y rendimiento de los protocolos de transporte. A este respecto, TCP sigue siendo el protocolo de transporte imperante y sus diferentes algoritmos de control de congestión (CCA) los responsables finales del rendimiento obtenido. Mientras que originalmente los distintos CCAs han sido implementados para hacer frente a diferentes casos de uso en redes fijas, ninguno de los CCAs ha sido diseñado para poder gestionar la variabilidad de throughput y retardos de diferentes condiciones de red redes móviles de una manera fácilmente implantable. Dado que el análisis de TCP sobre redes móviles es complejo debido a los múltiples factores de impacto, nuestro trabajo se centra en dos casos de uso generalizados que resultan significativos en cuanto a afección del rendimiento: movimiento de los usuarios como representación de la característica principal de las redes móviles frente a las redes fijas y el rendimiento de la fase de Start-up de TCP debido a la presencia mayoritaria de flujos cortos en Internet. Diferentes trabajos han sugerido la importancia de una mayor flexibilidad en la capa de transporte, creando servicios de transporte sobre TCP o UDP. Sin embargo, estas propuestas han encontrado limitaciones relativas a las dependencias arquitecturales de los protocolos utilizados como sustrato (p.ej. imposibilidad de cambiar la configuración de la capa de transporte una vez la transmisión a comenzado), experimentando una capa de transporte "osificada". Esta tesis surge como respuesta a fin de abordar la citada limitación y demostrando que existen posibilidades de mejora dentro de la familia de TCP (intra-protocolar), proponiendo un marco para solventar parcialmente la restricción a través de la selección dinámica del CCA más apropiado. Para ello, se evalúan y seleccionan los mayores puntos de impacto en el rendimiento de los casos de uso seleccionados en despliegues de red 4G y en despliegues de baja latencia que emulan las potenciales latencias en las futuras capacidades 5G. Estos puntos de impacto sirven como heurísticas para decidir el CCA más apropiado en el propuesto marco. Por último, se valida la propuesta en entornos de movilidad con dos posibilidades de selección: al comienzo de la transmisión (limitada flexibilidad de la capa de transporte) y dinámicamente durante la transmisión (con una capa de transporte flexible). Se concluye que la propuesta puede acarrear importantes mejoras de rendimiento al seleccionar el CCA más apropiado teniendo en cuenta la situación de red y los requerimientos de la capa de aplicación

    Explicit congestion control algorithms for time-varying capacity media

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Improved algorithms for TCP congestion control

    Get PDF
    Reliable and efficient data transfer on the Internet is an important issue. Since late 70’s the protocol responsible for that has been the de facto standard TCP, which has proven to be successful through out the years, its self-managed congestion control algorithms have retained the stability of the Internet for decades. However, the variety of existing new technologies such as high-speed networks (e.g. fibre optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless technologies have posed lots of challenges to TCP congestion control algorithms. The congestion control research community proposed solutions to most of these challenges. This dissertation adds to the existing work by: firstly tackling the highspeed long-delay problem of TCP, we propose enhancements to one of the existing TCP variants (part of Linux kernel stack). We then propose our own variant: TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss from congestive loss in a passive way and we propose a novel loss differentiation algorithm which quantifies the noise in packet inter arrival times and use this information together with the span (ratio of maximum to minimum packet inter arrival times) to adapt the multiplicative decrease factor according to a predefined logical formula. Finally, extending the well-known drift model of TCP to account for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease), we have undertaken stability analysis for the new version of the model

    Inferring congestion from delay and loss characteristics using parameters of the three-parameter Weibull distribution

    Get PDF
    Please read the abstract in the section “front” of this documentDissertation (MSc (Applied Science))--University of Pretoria, 2007.Electrical, Electronic and Computer EngineeringMScunrestricte
    corecore