28 research outputs found

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev¿Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for ¿ = 2,which corresponds to an optimal method in the sense of Kung and Traub¿s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274Gutiérrez, J. M., & Hernández, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Extending the Applicability of an Efficient Fifth Order Method Under Weak Conditions in Banach Space

    Get PDF
    We extend the applicability of an efficient fifth order method for solving Banach space valued equations. To achieve this we use weaker Lipschitz-type conditions in combination with our idea of the restricted convergence region. Numerical examples are used to compare our results favorably to the ones in earlier works

    Two New Predictor-Corrector Iterative Methods with Third- and Ninth-Order Convergence for Solving Nonlinear Equations

    Get PDF
    In this paper, we suggest and analyze two new predictor-corrector iterative methods with third and ninth-order convergence for solving nonlinear equations. The first method is a development of [M. A. Noor, K. I. Noor and K. Aftab, Some New Iterative Methods for Solving Nonlinear Equations, World Applied Science Journal, 20(6),(2012):870-874.] based on the trapezoidal integration rule and the centroid mean. The second method is an improvement of the first new proposed method by using the technique of updating the solution. The order of convergence and corresponding error equations of new proposed methods are proved. Several numerical examples are given to illustrate the efficiency and performance of these new methods and compared them with the Newton's method and other relevant iterative methods. Keywords: Nonlinear equations, Predictor–corrector methods, Trapezoidal integral rule, Centroid mean, Technique of updating the solution; Order of convergence

    On the convergence of a higher order family of methods and its dynamics

    Full text link
    [EN] In this paper, we present the study of the local convergence of a higher-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials is studied. Some anomalies are found in this family by means of studying the associated rational function. Parameter spaces are shown and the study of the stability of all the fixed points is presented. (C) 2016 Elsevier B.V. All rights reserved.This research was supported by Universidad Internacional de La Rioja (UNIR, http://www.unir.net), under the Plan Propio de Investigación, Desarrollo e Innovación 3 [2015–2017]. Research group: Modelación matemática aplicada a la ingeniería(MOMAIN), by the grant SENECA 19374/PI/14 and by Ministerio de Ciencia y Tecnología MTM2014-52016-C2-{01,02}-P.Argyros, IK.; Cordero Barbero, A.; Alberto Magreñán, A.; Torregrosa Sánchez, JR. (2017). On the convergence of a higher order family of methods and its dynamics. Journal of Computational and Applied Mathematics. 309:542-562. https://doi.org/10.1016/j.cam.2016.04.022S54256230

    Estudio sobre convergencia y dinámica de los métodos de Newton, Stirling y alto orden

    Get PDF
    Las matemáticas, desde el origen de esta ciencia, han estado al servicio de la sociedad tratando de dar respuesta a los problemas que surgían. Hoy en día sigue siendo así, el desarrollo de las matemáticas está ligado a la demanda de otras ciencias que necesitan dar solución a situaciones concretas y reales. La mayoría de los problemas de ciencia e ingeniería no pueden resolverse usando ecuaciones lineales, es por tanto que hay que recurrir a las ecuaciones no lineales para modelizar dichos problemas (Amat, 2008; véase también Argyros y Magreñán, 2017, 2018), entre otros. El conflicto que presentan las ecuaciones no lineales es que solo en unos pocos casos es posible encontrar una solución única, por tanto, en la mayor parte de los casos, para resolverlas hay que recurrir a los métodos iterativos. Los métodos iterativos generan, a partir de un punto inicial, una sucesión que puede converger o no a la solución

    Algoritmos basados en los Polinomios de Adomian e Interación Variacional para la resolución de ecuaciones no lineales

    Get PDF
    Esta tesis aborda las técnicas de los polinomios de Adomian e Iteración Variacional, que son métodos iterativos para resolver ecuaciones no lineales de la forma f (x) = 0: El objetivo principal es generar nuevos algoritmos y nuevos esquemas iterativos que permitan obtener nuevas fórmulas y métodos iterativos. Se estudian los polinomios de Adomian y se construyen nuevas variantes del método de Newton. También se estudian la técnica iterativa variacional y se obtienen algunos resultados conocidos, como también, nuevos esquemas y por ende, nuevos métodos iterativos. En el presente estudio se realiza una revisión de las diversas fórmulas existentes y se crean nuevas fórmulas mediante procedimientos matemáticos basados en los polinomios de Adomian y la técnica iterativa variacional. Se desarrolla la construcción de los principales esquemas iterativos, asi como el análisis de su convergencia, enfatizando en el orden de convergencia de dicho método. Este estudio permitió obtener los principales esquemas iterativos de cada método, mediante la deducción de su método constructivo, asi como el análisis de convergencia del mismo. Se ejemplifican y se calculan raíces de funciones no lineales de algunas funciones bases, utilizadas en los artículos científicos consultado. También, se realiza una comparación entre los algoritmos existentes y los diseñado en nuestra investigación, utilizando los criterios de: orden de convergencia, e-ciencia computacional, índice operacional, así como el máximo y mínimo número de evaluaciones funcionales e índice de e-ciencia computacional. Según los resultados obtenidos después de las comparaciones, nuestros algoritmos presentan un excelente funcionamiento con respecto a los existentes en la literatura sobre este área de conocimient
    corecore