2,940 research outputs found

    On Shape-Mediated Enrolment in Ear Biometrics

    No full text
    Ears are a new biometric with major advantage in that they appear to maintain their shape with increased age. Any automatic biometric system needs enrolment to extract the target area from the background. In ear biometrics the inputs are often human head profile images. Furthermore ear biometrics is concerned with the effects of partial occlusion mostly caused by hair and earrings. We propose an ear enrolment algorithm based on finding the elliptical shape of the ear using a Hough Transform (HT) accruing tolerance to noise and occlusion. Robustness is improved further by enforcing some prior knowledge. We assess our enrolment on two face profile datasets; as well as synthetic occlusion

    py4DSTEM: a software package for multimodal analysis of four-dimensional scanning transmission electron microscopy datasets

    Get PDF
    Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full 2D image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields and other sample-dependent properties. However, extracting this information requires complex analysis pipelines, from data wrangling to calibration to analysis to visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail, and present results from several experimental datasets. We have also implemented a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open source HDF5 standard. We hope this tool will benefit the research community, helps to move the developing standards for data and computational methods in electron microscopy, and invite the community to contribute to this ongoing, fully open-source project

    A Novel approach to a wearable eye tracker using region-based gaze estimation

    Get PDF
    Eye tracking studies are useful to understand human behavior and reactions to visual stimuli. To conduct experiments in natural environments it is common to use mobile or wearable eye trackers. To ensure these systems do not interfere with the natural behavior of the subject during the experiment, they should be comfortable and be able to collect information about the subject\u27s point of gaze for long periods of time. Most existing mobile eye trackers are costly and complex. Furthermore they partially obstruct the visual field of the subject by placing the eye camera directly in front of the eye. These systems are not suitable for natural outdoor environments due to external ambient light interfering with the infrared illumination used to facilitate gaze estimation. To address these limitations a new eye tracking system was developed and analyzed. The new system was designed to be light and unobtrusive. It has two high definition cameras mounted onto headgear worn by the subject and two mirrors placed outside the visual field of the subject to capture eye images. Based on the angular perspective of the eye, a novel gaze estimation algorithm was designed and optimized to estimate the gaze of the subject in one of nine possible directions. Several methods were developed to compromise between shape-based models and appearance-based models. The eye model and features were chosen based on the correlation with the different gaze directions. The performance of this eye tracking system was then experimentally evaluated based on the accuracy of gaze estimation and the weight of the system

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    The Chandra Source Catalog

    Get PDF
    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1 sigma uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of <~ 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively.Comment: To appear in The Astrophysical Journal Supplement Series, 53 pages, 27 figure

    CAD system for lung nodule analysis.

    Get PDF
    Lung cancer is the deadliest type of known cancer in the United States, claiming hundreds of thousands of lives each year. However, despite the high mortality rate, the 5-year survival rate after resection of Stage 1A non–small cell lung cancer is currently in the range of 62%– 82% and in recent studies even 90%. Patient survival is highly correlated with early detection. Computed Tomography (CT) technology services the early detection of lung cancer tremendously by offering a minimally invasive medical diagnostic tool. Some early types of lung cancer begin with a small mass of tissue within the lung, less than 3 cm in diameter, called a nodule. Most nodules found in a lung are benign, but a small population of them becomes malignant over time. Expert analysis of CT scans is the first step in determining whether a nodule presents a possibility for malignancy but, due to such low spatial support, many potentially harmful nodules go undetected until other symptoms motivate a more thorough search. Computer Vision and Pattern Recognition techniques can play a significant role in aiding the process of detecting and diagnosing lung nodules. This thesis outlines the development of a CAD system which, given an input CT scan, provides a functional and fast, second-opinion diagnosis to physicians. The entire process of lung nodule screening has been cast as a system, which can be enhanced by modern computing technology, with the hopes of providing a feasible diagnostic tool for clinical use. It should be noted that the proposed CAD system is presented as a tool for experts—not a replacement for them. The primary motivation of this thesis is the design of a system that could act as a catalyst for reducing the mortality rate associated with lung cancer

    Nuclei/Cell Detection in Microscopic Skeletal Muscle Fiber Images and Histopathological Brain Tumor Images Using Sparse Optimizations

    Get PDF
    Nuclei/Cell detection is usually a prerequisite procedure in many computer-aided biomedical image analysis tasks. In this thesis we propose two automatic nuclei/cell detection frameworks. One is for nuclei detection in skeletal muscle fiber images and the other is for brain tumor histopathological images. For skeletal muscle fiber images, the major challenges include: i) shape and size variations of the nuclei, ii) overlapping nuclear clumps, and iii) a series of z-stack images with out-of-focus regions. We propose a novel automatic detection algorithm consisting of the following components: 1) The original z-stack images are first converted into one all-in-focus image. 2) A sufficient number of hypothetical ellipses are then generated for each nuclei contour. 3) Next, a set of representative training samples and discriminative features are selected by a two-stage sparse model. 4) A classifier is trained using the refined training data. 5) Final nuclei detection is obtained by mean-shift clustering based on inner distance. The proposed method was tested on a set of images containing over 1500 nuclei. The results outperform the current state-of-the-art approaches. For brain tumor histopathological images, the major challenges are to handle significant variations in cell appearance and to split touching cells. The proposed novel automatic cell detection consists of: 1) Sparse reconstruction for splitting touching cells. 2) Adaptive dictionary learning for handling cell appearance variations. The proposed method was extensively tested on a data set with over 2000 cells. The result outperforms other state-of-the-art algorithms with F1 score = 0.96
    • 

    corecore