252 research outputs found

    Colour invariants for machine face recognition

    Full text link
    Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we investigate the discriminative power of colour-based invariants in the presence of large illumination changes between training and test data, when appearance changes due to cast shadows and non-Lambertian effects are significant. Specifically, there are three main contributions: (i) we employ a more sophisticated photometric model of the camera and show how its parameters can be estimated, (ii) we derive several novel colour-based face invariants, and (iii) on a large database of video sequences we examine and evaluate the largest number of colour-based representations in the literature. Our results suggest that colour invariants do have a substantial discriminative power which may increase the robustness and accuracy of recognition from low resolution images

    OBJECT MATCHING IN DISJOINT CAMERAS USING A COLOR TRANSFER APPROACH

    Get PDF
    Object appearance models are a consequence of illumination, viewing direction, camera intrinsics, and other conditions that are specific to a particular camera. As a result, a model acquired in one view is often inappropriate for use in other viewpoints. In this work we treat this appearance model distortion between two non-overlapping cameras as one in which some unknown color transfer function warps a known appearance model from one view to another. We demonstrate how to recover this function in the case where the distortion function is approximated as general affine and object appearance is represented as a mixture of Gaussians. Appearance models are brought into correspondence by searching for a bijection function that best minimizes an entropic metric for model dissimilarity. These correspondences lead to a solution for the transfer function that brings the parameters of the models into alignment in the UV chromaticity plane. Finally, a set of these transfer functions acquired from a collection of object pairs are generalized to a single camera-pair-specific transfer function via robust fitting. We demonstrate the method in the context of a video surveillance network and show that recognition of subjects in disjoint views can be significantly improved using the new color transfer approach

    Development of Landsat-based Technology for Crop Inventories: Appendices

    Get PDF
    There are no author-identified significant results in this report

    The Hyper-log-chromaticity space for illuminant invariance

    Get PDF
    Variation in illumination conditions through a scene is a common issue for classification, segmentation and recognition applications. Traffic monitoring and driver assistance systems have difficulty with the changing illumination conditions at night, throughout the day, with multiple sources (especially at night) and in the presence of shadows. The majority of existing algorithms for color constancy or shadow detection rely on multiple frames for comparison or to build a background model. The proposed approach uses a novel color space inspired by the Log-Chromaticity space and modifies the bilateral filter to equalize illumination across objects using a single frame. Neighboring pixels of the same color, but of different brightness, are assumed to be of the same object/material. The utility of the algorithm is studied over day and night simulated scenes of varying complexity. The objective is not to provide a product for visual inspection but rather an alternate image with fewer illumination related issues for other algorithms to process. The usefulness of the filter is demonstrated by applying two simple classifiers and comparing the class statistics. The hyper-log-chromaticity image and the filtered image both improve the quality of the classification relative to the un-processed image

    Cone-specific mediation of rod sensitivity in trichromatic observers

    Get PDF
    PURPOSE. The slope of the rod threshold versus the illuminance (TVI) function changes with the wavelength of the background light. This study was conducted to determine whether the changes in slope are due to the stimulation of specific cone classes. METHODS. An eight-channel optical system was used to generate lights that differed in cone and rod photoreceptor illuminance. Rod flicker TVI functions were measured in normal trichromatic observers at mesopic light levels. The independent variables were (1) the relative contribution of the short (S)-and long (L)-wavelength cones to the background light (i.e., the background lights varied along S-only and L-only lines), and (2) the temporal frequency of the flickering lights (4, 7.5, and 15 Hz). RESULTS. The 4-Hz rod flicker TVI function had a slope of 0.87 when measured near W (MacLeod-Boynton chromaticity of 0.66, 1.0). At 4 and 7.5 Hz, an increase in the relative L-cone illuminance steepened the slope of the rod-only TVI curve, but an increase in the relative S-cone illuminance had no effect. The slope of the 7.5-Hz TVI function decreased at higher illuminance levels. At 15 Hz, the thresholds could be measured over only a limited range. CONCLUSIONS. The L-cone system contributes to the desensitization of the rod system at mesopic light levels, whereas, in the range of lights used in these experiments, the S-cone system apparently does not. The possibility that S-cone stimulation desensitizes the response to rod signals at higher levels of S-cone illumination cannot be eliminated. (Invest Ophthalmol Vis Sci. 2002;43:898 -905) T he primate visual system operates over a range of 10 log units. This ability is due in part to the duplex retina in which scotopic (i.e., rod-dominated) vision operates at low light levels and photopic (i.e., cone-dominated) vision operates at high light levels. In several early studies, researchers proposed that these two systems behave independently of each other under many conditions, 1-4 but there is now clear evidence of the rods' influence on the cone systems and the cones' influence on the rod system. Visual signals originating in the rod photoreceptors do not have their own pathway to the brain but instead combine with neural signals originating in the cone photoreceptors. Signals originating with the rod photoreceptors are transmitted to the retinal ganglion cells through at least two anatomic pathways. One pathway combines through second-order cells. Rod photoreceptors connect to rod bipolar cells, which in turn connect to rod (AII) amacrine cells. The rod amacrine cells have gap junction connections with on-center ganglion cells in sublamina b of the inner plexiform layer, and have inhibitory synapses with off-center ganglion cells in sublamina a. Rod signals may also enter the cone circuit through gap junctions between rod spherules and cone pedicles (see Refs. 5-7). There is also recent evidence in rodents of a third pathway connecting the rod photoreceptors directly to OFF cone bipolar cells. 8,9 The general perceptual consequences of interaction between rods and cones have been documented extensively. We know, for instance, that the rod photoreceptor system influences cone-mediated sensitivity 10 -13 and vice versa 14 -18 ; that interaction between the rod and cone systems is more evident with flashed lights than with steady lights 19 ; and that location, spatial extent, and temporal frequency play an important role in determining the magnitude of rod and cone interaction. 17,20 -24 Rod-cone interaction (how rods influence cones) and cone-rod interaction (how cones influence rods) have become umbrella terms that characterize many classes of visual processing. One historical difficulty with experiments that investigate rod-cone (and cone-rod) interaction is that the narrowbandwidth lights (i.e., lights of a few spectral wavelengths) used as experimental stimuli often stimulate more than one class of photoreceptor. These experiments therefore do not lend themselves as easily to physiological interpretation. Many previous researchers have addressed such topics by measuring rod sensitivity to lights to which the rod system is much more sensitive than the cone systems (e.g., Ref. 25) or by investigating the responses of monochromatic and dichromatic observers. 26 -28 To investigate questions concerned with cone-rod interaction, I used an approach based on the cone-rod photoreceptor space defined by Shapiro et al. For this article, I examined rod TVI functions for 4-Hz flickering lights. Aguilar and Stiles 25 measured a rod TVI function by optimizing experimental parameters to isolate the rod system. One of these optimizations was to desensitize the cone systems with a long-wavelength adaptation light. They found that the slope of a major portion of the curve (i.e., when the adaptation light is between Ϫ2 and 2.2 log scotopic trolands [td]) is approximately 1.0. However, Sharpe et al

    Cone-specific mediation of rod sensitivity in trichromatic observers

    Get PDF
    PURPOSE. The slope of the rod threshold versus the illuminance (TVI) function changes with the wavelength of the background light. This study was conducted to determine whether the changes in slope are due to the stimulation of specific cone classes. METHODS. An eight-channel optical system was used to generate lights that differed in cone and rod photoreceptor illuminance. Rod flicker TVI functions were measured in normal trichromatic observers at mesopic light levels. The independent variables were (1) the relative contribution of the short (S)-and long (L)-wavelength cones to the background light (i.e., the background lights varied along S-only and L-only lines), and (2) the temporal frequency of the flickering lights (4, 7.5, and 15 Hz). RESULTS. The 4-Hz rod flicker TVI function had a slope of 0.87 when measured near W (MacLeod-Boynton chromaticity of 0.66, 1.0). At 4 and 7.5 Hz, an increase in the relative L-cone illuminance steepened the slope of the rod-only TVI curve, but an increase in the relative S-cone illuminance had no effect. The slope of the 7.5-Hz TVI function decreased at higher illuminance levels. At 15 Hz, the thresholds could be measured over only a limited range. CONCLUSIONS. The L-cone system contributes to the desensitization of the rod system at mesopic light levels, whereas, in the range of lights used in these experiments, the S-cone system apparently does not. The possibility that S-cone stimulation desensitizes the response to rod signals at higher levels of S-cone illumination cannot be eliminated. (Invest Ophthalmol Vis Sci. 2002;43:898 -905) T he primate visual system operates over a range of 10 log units. This ability is due in part to the duplex retina in which scotopic (i.e., rod-dominated) vision operates at low light levels and photopic (i.e., cone-dominated) vision operates at high light levels. In several early studies, researchers proposed that these two systems behave independently of each other under many conditions, 1-4 but there is now clear evidence of the rods' influence on the cone systems and the cones' influence on the rod system. Visual signals originating in the rod photoreceptors do not have their own pathway to the brain but instead combine with neural signals originating in the cone photoreceptors. Signals originating with the rod photoreceptors are transmitted to the retinal ganglion cells through at least two anatomic pathways. One pathway combines through second-order cells. Rod photoreceptors connect to rod bipolar cells, which in turn connect to rod (AII) amacrine cells. The rod amacrine cells have gap junction connections with on-center ganglion cells in sublamina b of the inner plexiform layer, and have inhibitory synapses with off-center ganglion cells in sublamina a. Rod signals may also enter the cone circuit through gap junctions between rod spherules and cone pedicles (see Refs. 5-7). There is also recent evidence in rodents of a third pathway connecting the rod photoreceptors directly to OFF cone bipolar cells. 8,9 The general perceptual consequences of interaction between rods and cones have been documented extensively. We know, for instance, that the rod photoreceptor system influences cone-mediated sensitivity 10 -13 and vice versa 14 -18 ; that interaction between the rod and cone systems is more evident with flashed lights than with steady lights 19 ; and that location, spatial extent, and temporal frequency play an important role in determining the magnitude of rod and cone interaction. 17,20 -24 Rod-cone interaction (how rods influence cones) and cone-rod interaction (how cones influence rods) have become umbrella terms that characterize many classes of visual processing. One historical difficulty with experiments that investigate rod-cone (and cone-rod) interaction is that the narrowbandwidth lights (i.e., lights of a few spectral wavelengths) used as experimental stimuli often stimulate more than one class of photoreceptor. These experiments therefore do not lend themselves as easily to physiological interpretation. Many previous researchers have addressed such topics by measuring rod sensitivity to lights to which the rod system is much more sensitive than the cone systems (e.g., Ref. 25) or by investigating the responses of monochromatic and dichromatic observers. 26 -28 To investigate questions concerned with cone-rod interaction, I used an approach based on the cone-rod photoreceptor space defined by Shapiro et al. For this article, I examined rod TVI functions for 4-Hz flickering lights. Aguilar and Stiles 25 measured a rod TVI function by optimizing experimental parameters to isolate the rod system. One of these optimizations was to desensitize the cone systems with a long-wavelength adaptation light. They found that the slope of a major portion of the curve (i.e., when the adaptation light is between Ϫ2 and 2.2 log scotopic trolands [td]) is approximately 1.0. However, Sharpe et al
    corecore