1,362 research outputs found

    Investigating evolutionary checkers by incorporating individual and social learning, N-tuple systems and a round robin tournament

    Get PDF
    In recent years, much research attention has been paid to evolving self-learning game players. Fogel's Blondie24 is just one demonstration of a real success in this field and it has inspired many other scientists. In this thesis, artificial neural networks are employed to evolve game playing strategies for the game of checkers by introducing a league structure into the learning phase of a system based on Blondie24. We believe that this helps eliminate some of the randomness in the evolution. The best player obtained is tested against an evolutionary checkers program based on Blondie24. The results obtained are promising. In addition, we introduce an individual and social learning mechanism into the learning phase of the evolutionary checkers system. The best player obtained is tested against an implementation of an evolutionary checkers program, and also against a player, which utilises a round robin tournament. The results are promising. N-tuple systems are also investigated and are used as position value functions for the game of checkers. The architecture of the n-tuple is utilises temporal difference learning. The best player obtained is compared with an implementation of evolutionary checkers program based on Blondie24, and also against a Blondie24 inspired player, which utilises a round robin tournament. The results are promising. We also address the question of whether piece difference and the look-ahead depth are important factors in the Blondie24 architecture. Our experiments show that piece difference and the look-ahead depth have a significant effect on learning abilities

    Investigating evolutionary checkers by incorporating individual and social learning, N-tuple systems and a round robin tournament

    Get PDF
    In recent years, much research attention has been paid to evolving self-learning game players. Fogel's Blondie24 is just one demonstration of a real success in this field and it has inspired many other scientists. In this thesis, artificial neural networks are employed to evolve game playing strategies for the game of checkers by introducing a league structure into the learning phase of a system based on Blondie24. We believe that this helps eliminate some of the randomness in the evolution. The best player obtained is tested against an evolutionary checkers program based on Blondie24. The results obtained are promising. In addition, we introduce an individual and social learning mechanism into the learning phase of the evolutionary checkers system. The best player obtained is tested against an implementation of an evolutionary checkers program, and also against a player, which utilises a round robin tournament. The results are promising. N-tuple systems are also investigated and are used as position value functions for the game of checkers. The architecture of the n-tuple is utilises temporal difference learning. The best player obtained is compared with an implementation of evolutionary checkers program based on Blondie24, and also against a Blondie24 inspired player, which utilises a round robin tournament. The results are promising. We also address the question of whether piece difference and the look-ahead depth are important factors in the Blondie24 architecture. Our experiments show that piece difference and the look-ahead depth have a significant effect on learning abilities

    Go artificial intelligence: a scalable evolutionary approach

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2016This report covers scaling neural networks for training Go artificial intelligence. The Go board is broken up into subsections, allowing for each subsection to be calculated independently, and then factored into an overall board evaluation. This modular approach allows for subsection networks to be translated to larger board evaluations, retaining knowledge gained. The methodology covered shows promise for significant reduction in training times required for unsupervised training of Go AI. A brief history of artificial neural networks and an overview of Go and the specific rules that were used in this project are presented. Experiment design and results are presented, showing a promising proof of concept for reducing training time required for evolutionary Go AI. The codebase for the project is Apache 2.0 licensed and is available on GitHub

    Recent Advances in General Game Playing

    Get PDF
    The goal of General Game Playing (GGP) has been to develop computer programs that can perform well across various game types. It is natural for human game players to transfer knowledge from games they already know how to play to other similar games. GGP research attempts to design systems that work well across different game types, including unknown new games. In this review, we present a survey of recent advances (2011 to 2014) in GGP for both traditional games and video games. It is notable that research on GGP has been expanding into modern video games. Monte-Carlo Tree Search and its enhancements have been the most influential techniques in GGP for both research domains. Additionally, international competitions have become important events that promote and increase GGP research. Recently, a video GGP competition was launched. In this survey, we review recent progress in the most challenging research areas of Artificial Intelligence (AI) related to universal game playing

    Intelligent strategy for two-person non-random perfect information zero-sum game.

    Get PDF
    Tong Kwong-Bun.Thesis submitted in: December 2002.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 77-[80]).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- An Overview --- p.1Chapter 1.2 --- Tree Search --- p.2Chapter 1.2.1 --- Minimax Algorithm --- p.2Chapter 1.2.2 --- The Alpha-Beta Algorithm --- p.4Chapter 1.2.3 --- Alpha-Beta Enhancements --- p.5Chapter 1.2.4 --- Selective Search --- p.9Chapter 1.3 --- Construction of Evaluation Function --- p.16Chapter 1.4 --- Contribution of the Thesis --- p.17Chapter 1.5 --- Structure of the Thesis --- p.19Chapter 2 --- The Probabilistic Forward Pruning Framework --- p.20Chapter 2.1 --- Introduction --- p.20Chapter 2.2 --- The Generalized Probabilistic Forward Cuts Heuristic --- p.21Chapter 2.3 --- The GPC Framework --- p.24Chapter 2.3.1 --- The Alpha-Beta Algorithm --- p.24Chapter 2.3.2 --- The NegaScout Algorithm --- p.25Chapter 2.3.3 --- The Memory-enhanced Test Algorithm --- p.27Chapter 2.4 --- Summary --- p.27Chapter 3 --- The Fast Probabilistic Forward Pruning Framework --- p.30Chapter 3.1 --- Introduction --- p.30Chapter 3.2 --- The Fast GPC Heuristic --- p.30Chapter 3.2.1 --- The Alpha-Beta algorithm --- p.32Chapter 3.2.2 --- The NegaScout algorithm --- p.32Chapter 3.2.3 --- The Memory-enhanced Test algorithm --- p.35Chapter 3.3 --- Performance Evaluation --- p.35Chapter 3.3.1 --- Determination of the Parameters --- p.35Chapter 3.3.2 --- Result of Experiments --- p.38Chapter 3.4 --- Summary --- p.42Chapter 4 --- The Node-Cutting Heuristic --- p.43Chapter 4.1 --- Introduction --- p.43Chapter 4.2 --- Move Ordering --- p.43Chapter 4.2.1 --- Quality of Move Ordering --- p.44Chapter 4.3 --- Node-Cutting Heuristic --- p.46Chapter 4.4 --- Performance Evaluation --- p.48Chapter 4.4.1 --- Determination of the Parameters --- p.48Chapter 4.4.2 --- Result of Experiments --- p.50Chapter 4.5 --- Summary --- p.55Chapter 5 --- The Integrated Strategy --- p.56Chapter 5.1 --- Introduction --- p.56Chapter 5.2 --- "Combination of GPC, FGPC and Node-Cutting Heuristic" --- p.56Chapter 5.3 --- Performance Evaluation --- p.58Chapter 5.4 --- Summary --- p.63Chapter 6 --- Conclusions and Future Works --- p.64Chapter 6.1 --- Conclusions --- p.64Chapter 6.2 --- Future Works --- p.65Chapter A --- Examples --- p.67Chapter B --- The Rules of Chinese Checkers --- p.73Chapter C --- Application to Chinese Checkers --- p.75Bibliography --- p.7

    Tribes: A New Turn-Based Strategy Game for AI Research

    Get PDF
    This paper introduces Tribes, a new turn-based strategy game framework. Tribes is a multi-player, multi-agent, stochastic and partially observable game that involves strategic and tactical combat decisions. A good playing strategy requires the management of a technology tree, build orders and economy. The framework provides a Forward Model, which can be used by Statistical Forward Planning methods. This paper describes the framework and the opportunities for Game AI research it brings. We further provide an analysis on the action space of this game, as well as benchmarking a series of agents (rule based, one step look-ahead, Monte Carlo, Monte Carlo Tree Search, and Rolling Horizon Evolution) to study their relative playing strength. Results show that although some of these agents can play at a decent level, they are still far from human playing strength

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work
    • …
    corecore