926 research outputs found

    COLAB:A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: Partially funded by the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Many-core Systems (EP/P020631/1) and ABC: Adaptive Brokerage for Cloud (EP/R010528/1); Royal Academy of Engineering under the Research Fellowship scheme.Increasingly prevalent asymmetric multicore processors (AMP) are necessary for delivering performance in the era of limited power budget and dark silicon. However, the software fails to use them efficiently. OS schedulers, in particular, handle asymmetry only under restricted scenarios. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all runtime factors affecting AMP for multi-threaded multi-programmed workloads. This paper introduces the first general purpose asymmetry-aware scheduler for multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and identifies communication patterns and bottleneck threads. The scheduler then makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluate our approach using the GEM5 simulator on four distinct big.LITTLE configurations and 26 mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin

    HLS: a framework for composing soft real-time schedulers

    Get PDF
    Journal ArticleHierarchical CPU scheduling has emerged as a way to (1) support applications with diverse scheduling requirements in open systems, and (2) provide load isolation between applications, users, and other resource principals. Most existing work on hierarchical scheduling has focused on systems that provide a fixed scheduling model: the schedulers in part or all of the hierarchy are specified in advance. In this paper we describe a system of guarantees that permits a general hierarchy of soft real-time schedulers-one that contains arbitrary scheduling algorithms at all points within the hierarchy-to be analyzed. This analysis results in deterministic guarantees for threads at the leaves of the hierarchy. We also describe the design, implementation, and performance evaluation of a system for supporting such a hierarchy in the Windows 2000 kernel. Finally, we show that complex scheduling behaviors can be created using small schedulers as components and describe the HLS programming environment

    Heterogeneity-aware scheduling and data partitioning for system performance acceleration

    Get PDF
    Over the past decade, heterogeneous processors and accelerators have become increasingly prevalent in modern computing systems. Compared with previous homogeneous parallel machines, the hardware heterogeneity in modern systems provides new opportunities and challenges for performance acceleration. Classic operating systems optimisation problems such as task scheduling, and application-specific optimisation techniques such as the adaptive data partitioning of parallel algorithms, are both required to work together to address hardware heterogeneity. Significant effort has been invested in this problem, but either focuses on a specific type of heterogeneous systems or algorithm, or a high-level framework without insight into the difference in heterogeneity between different types of system. A general software framework is required, which can not only be adapted to multiple types of systems and workloads, but is also equipped with the techniques to address a variety of hardware heterogeneity. This thesis presents approaches to design general heterogeneity-aware software frameworks for system performance acceleration. It covers a wide variety of systems, including an OS scheduler targeting on-chip asymmetric multi-core processors (AMPs) on mobile devices, a hierarchical many-core supercomputer and multi-FPGA systems for high performance computing (HPC) centers. Considering heterogeneity from on-chip AMPs, such as thread criticality, core sensitivity, and relative fairness, it suggests a collaborative based approach to co-design the task selector and core allocator on OS scheduler. Considering the typical sources of heterogeneity in HPC systems, such as the memory hierarchy, bandwidth limitations and asymmetric physical connection, it proposes an application-specific automatic data partitioning method for a modern supercomputer, and a topological-ranking heuristic based schedule for a multi-FPGA based reconfigurable cluster. Experiments on both a full system simulator (GEM5) and real systems (Sunway Taihulight Supercomputer and Xilinx Multi-FPGA based clusters) demonstrate the significant advantages of the suggested approaches compared against the state-of-the-art on variety of workloads."This work is supported by St Leonards 7th Century Scholarship and Computer Science PhD funding from University of St Andrews; by UK EPSRC grant Discovery: Pattern Discovery and Program Shaping for Manycore Systems (EP/P020631/1)." -- Acknowledgement

    Efficient Resource Matching in Heterogeneous Grid Using Resource Vector

    Full text link
    In this paper, a method for efficient scheduling to obtain optimum job throughput in a distributed campus grid environment is presented; Traditional job schedulers determine job scheduling using user and job resource attributes. User attributes are related to current usage, historical usage, user priority and project access. Job resource attributes mainly comprise of soft requirements (compilers, libraries) and hard requirements like memory, storage and interconnect. A job scheduler dispatches jobs to a resource if a job's hard and soft requirements are met by a resource. In current scenario during execution of a job, if a resource becomes unavailable, schedulers are presented with limited options, namely re-queuing job or migrating job to a different resource. Both options are expensive in terms of data and compute time. These situations can be avoided, if the often ignored factor, availability time of a resource in a grid environment is considered. We propose resource rank approach, in which jobs are dispatched to a resource which has the highest rank among all resources that match the job's requirement. The results show that our approach can increase throughput of many serial / monolithic jobs.Comment: 10 page

    Using hierarchical scheduling to support soft real-time applications in general-purpose operating systems

    Get PDF
    Journal ArticleThe CPU schedulers in general-purpose operating systems are designed to provide fast response time for interactive applications and high throughput for batch applications. The heuristics used to achieve these goals do not lend themselves to scheduling real-time applications, nor do they meet other scheduling requirements such as coordinating scheduling across several processors or machines, or enforcing isolation between applications, users, and administrative domains. Extending the scheduling subsystems of general-purpose operating systems in an ad hoc manner is time consuming and requires considerable expertise as well as source code to the operating system. Furthermore, once extended, the new scheduler may be as inflexible as the original. The thesis of this dissertation is that extending a general-purpose operating system with a general, heterogeneous scheduling hierarchy is feasible and useful. A hierarchy of schedulers generalizes the role of CPU schedulers by allowing them to schedule other schedulers in addition to scheduling threads. A general, heterogeneous scheduling hierarchy is one that allows arbitrary (or nearly arbitrary) scheduling algorithms throughout the hierarchy. In contrast, most of the previous work on hierarchical scheduling has imposed restrictions on the schedulers used in part or all of the hierarchy. This dissertation describes the Hierarchical Loadable Scheduler (HLS) architecture, which permits schedulers to be dynamically composed in the kernel of a general-purpose operating system. The most important characteristics of HLS, and the ones that distinguish it from previous work, are that it has demonstrated that a hierarchy of nearly arbitrary schedulers can be efficiently implemented in a general-purpose operating system, and that the behavior of a hierarchy of soft real-time schedulers can be reasoned about in order to provide guaranteed scheduling behavior to application threads. The flexibility afforded by HLS permits scheduling behavior to be tailored to meet complex requirements without encumbering users who have modest requirements with the performance and administrative costs of a complex scheduler. Contributions of this dissertation include the following. (1) The design, prototype implementation, and performance evaluation of HLS in Windows 2000. (2) A system of guarantees for scheduler composition that permits reasoning about the scheduling behavior of a hierarchy of soft real-time schedulers. Guarantees assure users that application requirements can be met throughout the lifetime of the application, and also provide application developers with a model of CPU allocation to which they can program. (3) The design, implementation, and evaluation of two augmented CPU reservation schedulers, which provide increase scheduling predictability when low-level operating system activity steals time from applications

    A Hierarchical Scheduling Model for Dynamic Soft-Realtime System

    Get PDF
    We present a new hierarchical approximation and scheduling approach for applications and tasks with multiple modes on a single processor. Our model allows for a temporal and spatial distribution of the feasibility problem for a variable set of tasks with non-deterministic and fluctuating costs at runtime. In case of overloads an optimal degradation strategy selects one of several application modes or even temporarily deactivates applications. Hence, transient and permanent bottlenecks can be overcome with an optimal system quality, which is dynamically decided. This paper gives the first comprehensive and complete overview of all aspects of our research, including a novel CBS concept to confine entire applications, an evaluation of our system by using a video-on-demand application, an outline for adding further resource dimension, and aspects of our protoype implementation based on RTSJ

    Workload Schedulers - Genesis, Algorithms and Comparisons

    Get PDF
    In this article we provide brief descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems, Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion, we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems
    • …
    corecore