13 research outputs found

    Caractérisation électrique des propriétés d'interface dans les MOSFET nanométriques par des mesures de bruit basse fréquence

    Get PDF
    In this thesis, electrical properties of gate oxide/channel interface in ultra-scaled nanowire (NW) MOSFETs were experimentally investigated by carrier transport and low-frequency noise (LFN) characterizations. NW FETs, which have aggressively downscaled cross-section of the body, are strong candidates for near future CMOS node. However, the interface quality could be a critical issue due to the large surface/volume ratio, the multiple surface orientations, and additional strain technology to enhance the performance. Understanding of carrier transport and channel interface quality in NW FETs with advanced high-k/metal gate is thus particularly important. LFN provides deep insights into the interface properties of MOSFET without lower limit of required channel size. LFN measurement thus can be a powerful technique for ultra-scaled NW FETs. Also, fitting mobility (such as low-field mobility) extraction by Y-function method is an efficient method. Omega-gate NW FETs were fabricated from FD-SOI substrates, and with Hf-based high-k/metal gate (HfSiON/TiN), reducing detrimental effects by device downscaling. In addition, strain technologies to the channel were additively processed. Tensile strained-SOI substrate was used for NMOS, whereas compressive stressors were used for PMOS devices. Strained Si channel for PMOS was processed by raised SiGe S/D and CESL formations. Strained SiGe channel (SGOI) was also fabricated for further high-performance PMOS FETs. Firstly, the most common Id-Vg was characterized in single-channel NW FETs as the basic performance. Reference SOI NWs provided the excellent static control down to short channel of 17nm. Stressors dramatically enhanced on-current owing to a modification of channel energy-band structure. Then, extracted low-field mobility in NWs also showed large improvement of the performance by stressors. The mobility extraction effectively evaluated FET performance even for ultra-scaled NWs. Next, LFN investigated for various technological and architectural parameters. Carrier number fluctuations with correlated mobility fluctuations (CNF+CMF) model described 1/f noise in all our FETs down to the shortest NWs. Drain current noise behavior was basically similar in both N- and PMOS FETs regardless of technological splits. Larger 1/f noise stemming from S/D regions in PMOS FETs was perfectly interpreted by the CNF+CMF model completed with Rsd fluctuations. This observation highlighted an advantage of SGOI NW with the lowest level of S/D region noise. Geometrical variations altered the CNF component with simple impact of device scaling (reciprocal to both Wtot and Lg). No large impact of surface orientation difference between the channel (100) top and (110) side-walls in [110]-oriented NWs was observed. Scaling regularity with both Wtot and Lg, without much quantum effect, could be attributed to the use of HfSiON/TiN gate and carrier transport occurring mostly near top and side-wall surfaces even in NW geometry. Meanwhile, the CMF factor was not altered by decreasing dimensions, while the mobility strongly depends on the impact. Extracted oxide trap density was roughly steady with scaling, structure, and technological parameter impacts. Simple separation method of the contributions between channel top surface and side-walls was demonstrated in order to evaluate the difference. It revealed that oxide quality on (100) top and (110) side-walls was roughly comparable in all the [110]-devices. The density values lie in similar order as the recent reports. An excellent quality of the interface with HfSiON/TiN gate was thus sustained for all our technological and geometrical splits. Finally, our NWs fulfilled 1/f LFN requirements stated in the ITRS 2013 for future MG CMOS logic node. Consequently, we concluded that appropriate strain technologies powerfully improve both carrier transport and LFN property for future CMOS circuits consisting of NW FETs, without any large concern about the interface quality.Dans cette thèse, les propriétés électriques de transistors à nanofils de silicium liées à l'interface oxyde de grille/canal ont été étudiées par le biais de mesures de bruit basse fréquence (bruit 1/f) et de transport dans le canal. Ces transistors nanofils dont les dimensions ont été réduites jusqu'à quelques nanomètres pour la section, représentent une alternative sérieuse pour les futurs nœuds technologiques CMOS. Cependant, la qualité de l'interface oxyde de grille/canal pose question pour transistors dont l'architecture s'étend dans les 3 dimensions, en raison du fort rapport surface/volume inhérent à ces transistors, des différentes orientations cristallographiques de ces interfaces, ou encore des matériaux contraints utilisés pour améliorer les performances électriques. La compréhension des liens entre les propriétés de transport des porteurs dans le canal, qui garantissent en grande partie les performances électriques des transistors, et la qualité de l'interface avec l'oxyde de grille est fond primordiale pour optimiser les transistors nanofils. Les mesures de bruit, associées à l'étude du transport dans le canal, sont un outil puissant et adapté à ces dispositifs tridimensionnels, sans être limité par la taille ultra-réduite des transistors nanofils. Les transistors nanofils étudiés ont été fabriqués à partir de substrats minces SOI, et intègrent un empilement de grille HfSiON/TiN, qui permet de réduire les dimensions tout en conservant les mêmes propriétés électrostatiques. Pour gagner en performances, des contraintes mécaniques ont été introduites dans le canal en silicium : en tension pour les NMOS, par le biais de substrat contraint (sSOI), et en compression pour les PMOS. Un canal en compression uni-axiale peut être obtenu par l'intégration de source/drain en SiGe et/ou par l'utilisation de couches contraintes de type CESL. Des transistors à canal SiGe sur isolant en compression ont également été fabriqués et étudiés. Les caractéristiques électriques des divers transistors nanofils (courbes Id-Vg, compromis Ion-Ioff, mobilité des porteurs) démontrent l'excellent contrôle électrostatique dû à l'architecture 3D, ainsi que l'efficacité de l'ingénierie de contraintes dans les nanofils jusqu'à de faibles longueurs de grilles (~17nm). Des mesures de bruit basse fréquence ont été réalisées sur ces mêmes dispositifs et analysées en fonction des paramètres géométriques de l'architecture nanofils (largeur W, forme de la section, longueur de grille L), et des diverses variantes technologiques. Nous avons démontré que le bruit 1/f dans les transistors nanofils peut être décrit par le modèle de fluctuations du nombre de porteurs (CNF) corrélées aux fluctuations de mobilité (CMF). Le bruit associé aux régions S/D a pu également être intégré dans ce modèle en ajoutant une contribution, en particulier pour les PMOS. Alors que les différentes variantes technologiques ont peu d'effet sur le bruit 1/f, les variations de géométrie en L et W changent la composante de bruit liée aux fluctuations du nombre de porteurs (CNF) de manière inversement proportionnelle à la surface totale (~1/WL). Cette augmentation du bruit est le reflet du transport qui se produit à proximité des interfaces avec l'oxyde. Les différentes orientations des interfaces supérieures et latérales (110) ou (100) présentent la même quantité de pièges d'interface (extrait à partir des mesures de bruit 1/f, en séparant les contributions des différentes faces du nanofil) bien qu'ayant une rugosité différente essentiellement liée au process. En revanche la composante CMF n'est pas altérée par la réduction des dimensions contrairement à la mobilité des porteurs qui décroit fortement avec L. Finalement, les mesures de bruit 1/f ont été comparées aux spécifications ITRS 2013 pour les transistors multi-grilles en vue des futurs nœuds technologiques de la logique CMOS, et démontrent que nos transistors nanofils satisfont les exigences en la matière

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Strain integration and performance optimization in sub-20nm FDSOI CMOS technology

    Get PDF
    La technologie CMOS à base de Silicium complètement déserté sur isolant (FDSOI) est considérée comme une option privilégiée pour les applications à faible consommation telles que les applications mobiles ou les objets connectés. Elle doit cela à son architecture garantissant un excellent comportement électrostatique des transistors ainsi qu'à l'intégration de canaux contraints améliorant la mobilité des porteurs. Ce travail de thèse explore des solutions innovantes en FDSOI pour nœuds 20nm et en deçà, comprenant l'ingénierie de la contrainte mécanique à travers des études sur les matériaux, les dispositifs, les procédés d'intégration et les dessins des circuits. Des simulations mécaniques, caractérisations physiques (µRaman), et intégrations expérimentales de canaux contraints (sSOI, SiGe) ou de procédés générant de la contrainte (nitrure, fluage de l'oxyde enterré) nous permettent d'apporter des recommandations pour la technologie et le dessin physique des transistors en FDSOI. Dans ce travail de thèse, nous avons étudié le transport dans les dispositifs à canal court, ce qui nous a amené à proposer une méthode originale pour extraire simultanément la mobilité des porteurs et la résistance d'accès. Nous mettons ainsi en évidence la sensibilité de la résistance d'accès à la contrainte que ce soit pour des transistors FDSOI ou nanofils. Nous mettons en évidence et modélisons la relaxation de la contrainte dans le SiGe apparaissant lors de la gravure des motifs et causant des effets géométriques (LLE) dans les technologies FDSOI avancées. Nous proposons des solutions de type dessin ainsi que des solutions technologiques afin d'améliorer la performance des cellules standard digitales et de mémoire vive statique (SRAM). En particulier, nous démontrons l'efficacité d'une isolation duale pour la gestion de la contrainte et l'extension de la capacité de polarisation arrière, qui un atout majeur de la technologie FDSOI. Enfin, la technologie 3D séquentielle rend possible la polarisation arrière en régime dynamique, à travers une co-optimisation dessin/technologie (DTCO).The Ultra-Thin Body and Buried oxide Fully Depleted Silicon On Insulator (UTBB FDSOI) CMOS technology has been demonstrated to be highly efficient for low power and low leakage applications such as mobile, internet of things or wearable. This is mainly due to the excellent electrostatics in the transistor and the successful integration of strained channel as a carrier mobility booster. This work explores scaling solutions of FDSOI for sub-20nm nodes, including innovative strain engineering, relying on material, device, process integration and circuit design layout studies. Thanks to mechanical simulations, physical characterizations and experimental integration of strained channels (sSOI, SiGe) and local stressors (nitride, oxide creeping, SiGe source/drain) into FDSOI CMOS transistors, we provide guidelines for technology and physical circuit design. In this PhD, we have in-depth studied the carrier transport in short devices, leading us to propose an original method to extract simultaneously the carrier mobility and the access resistance and to clearly evidence and extract the strain sensitivity of the access resistance, not only in FDSOI but also in strained nanowire transistors. Most of all, we evidence and model the patterning-induced SiGe strain relaxation, which is responsible for electrical Local Layout Effects (LLE) in advanced FDSOI transistors. Taking into account these geometrical effects observed at the nano-scale, we propose design and technology solutions to enhance Static Random Access Memory (SRAM) and digital standard cells performance and especially an original dual active isolation integration. Such a solution is not only stress-friendly but can also extend the powerful back-bias capability, which is a key differentiating feature of FDSOI. Eventually the 3D monolithic integration can also leverage planar Fully-Depleted devices by enabling dynamic back-bias owing to a Design/Technology Co-Optimization

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Characterisation of thermal and coupling effects in advanced silicon MOSFETs

    Get PDF
    PhD ThesisNew approaches to metal-oxide-semiconductor field effect transistor (MOSFET) engineering emerge in order to keep up with the electronics market demands. Two main candidates for the next few generations of Moore’s law are planar ultra-thin body and buried oxide (UTBB) devices and three-dimensional FinFETs. Due to miniature dimensions and new materials with low thermal conductivity, performance of advanced MOSFETs is affected by self-heating and substrate effects. Self-heating results in an increase of the device temperature which causes mobility reduction, compromised reliability and signal delays. The substrate effect is a parasitic source and drain coupling which leads to frequency-dependent analogue behaviour. Both effects manifest themselves in the output conductance variation with frequency and impact analogue as well as digital performance. In this thesis self-heating and substrate effects in FinFETs and UTBB devices are characterised, discussed and compared. The results are used to identify trade-offs in device performance, geometry and thermal properties. Methods how to optimise the device geometry or biasing conditions in order to minimise the parasitic effects are suggested. To identify the most suitable technique for self-heating characterisation in advanced semiconductor devices, different methods of thermal characterisation (time and frequency domain) were experimentally compared and evaluated alongside an analytical model. RF and two different pulsed I-V techniques were initially applied to partially depleted silicon-on-insulator (PDSOI) devices. The pulsed I-V hot chuck method showed good agreement with the RF technique in the PDSOI devices. However, subsequent analysis demonstrated that for more advanced technologies the time domain methods can underestimate self-heating. This is due to the reduction of the thermal time constants into the nanosecond range and limitations of the pulsed I-V set-up. The reduction is related to the major increase of the surface to volume ratio in advanced MOSFETs. Consequently the work showed that the thermal properties of advanced semiconductor devices must be characterised within the frequency domain. For UTBB devices with 7-8 nm Si body and 10 nm ultra-thin buried oxide (BOX) the analogue performance degradation caused by the substrate effects can be stronger than the analogue performance degradation caused by self-heating. However, the substrate effects can be effectively reduced if the substrate doping beneath the buried ii oxide is adjusted using a ground plane. In the MHz – GHz frequency range the intrinsic voltage gain variation is reduced ~6 times when a device is biased in saturation if a ground plane is implemented compared with a device without a ground plane. UTBB devices with 25 nm BOX were compared with UTBB devices with 10 nm BOX. It was found that the buried oxide thinning from 25 nm to 10 nm is not critical from the thermal point of view as other heat evacuation paths (e.g. source and drain) start to play a role. Thermal and substrate effects in FinFETs were also analysed. It was experimentally shown that FinFET thermal properties depend on the device geometry. The thermal resistance of FinFETs strongly varies with the fin width and number of parallel fins, whereas the fin spacing is less critical. The results suggest that there are trade-offs between thermal properties and integration density, electrostatic control and design complexity, since these aspects depend on device geometry. The high frequency substrate effects were found to be effectively reduced in devices with sub-100 nm wide fins.Engineering and Physical Sciences Research Council (EPSRC) and EU fundin

    Nanoscale characterisation of dielectrics for advanced materials and electronic devices

    Get PDF
    PhD ThesisStrained silicon (Si) and silicon-germanium (SiGe) devices have long been recognised for their enhanced mobility and higher on-state current compared with bulk-Si transistors. However, the performance and reliability of dielectrics on strained Si/strained SiGe is usually not same as for bulk-Si. Epitaxial growth of strained Si/SiGe can induce surface roughness. The typical scale of surface roughness is generally higher than bulk-Si and can exceed the device size. Surface roughness has previously been shown to impact the electrical properties of the gate dielectric. Conventional macroscopic characterisation techniques are not capable of studying localised electrical behaviour, and thus prevent an understanding of the influence of large scale surface roughness. However scanning probe microscopy (SPM) techniques are capable of simultaneously imaging material and electrical properties. This thesis focuses on understanding the relationship between substrate induced surface roughness and the electrical performance of the overlying dielectric in high mobility strained Si/SiGe devices. SPM techniques including conductive atomic force microscopy (C-AFM) and scanning capacitance microscopy (SCM) have been applied to tensile strained Si and compressively strained SiGe materials and devices, suitable for enhancing electron and hole mobility, respectively. Gate leakage current, interface trap density, breakdown behaviour and dielectric thickness uniformity have been studied at the nanoscale. Data obtained by SPM has been compared with macroscopic electrical data from the same devices and found to be in good agreement. For strained Si devices exhibiting the typical crosshatch morphology, the electrical performance and reliability of the dielectric is strongly influenced by the roughness. Troughs and slopes of the crosshatch morphology lead to degraded gate leakage and trapped charge at the interface compared with peaks on the crosshatch undulations. Tensile strained Si material which does not exhibit the crosshatch undulation exhibits improved uniformity in dielectric properties. Quantitative agreement has been found for leakage at a device-level and nanoscale, when accounting for the tip area. The techniques developed can be used to study individual defects or regions on dielectrics whether grown or deposited (including high-κ) and on different substrates including strained Si on insulator (SSOI), strained Ge on insulator (SGOI), strained Ge, silicon carbide (SiC) and graphene. Strained SiGe samples with Ge content varying from 0 to 65% have also been studied. The increase in leakage and trapped charge density with increasing Ge extracted from SPM data is in good agreement with theory and macroscopic data. The techniques appear to be very sensitive, with SCM analysis detecting other dielectric related defects on a 20% Ge sample and the effects of the 65% Ge later exceeding the critical thickness (increased defects and variability in characteristics). Further applications and work to advance the use of electrical SPM techniques are also discussed. These include anti-reflective coatings, synthetic chrysotile nanotubes and sensitivity studies.Overseas Research Students Awards Scheme (ORSAS), School International Research Scholarship (SIRS), Newcastle University International Postgraduate Scholarship (NUIPS) and the Strained Si/SiGe platform grant

    Caractérisation, mécanismes et applications mémoire des transistors avancés sur SOI

    Get PDF
    Ce travail présente les principaux résultats obtenus avec une large gamme de dispositifs SOI avancés, candidats très prometteurs pour les futurs générations de transistors MOSFETs. Leurs propriétés électriques ont été analysées par des mesures systématiques, agrémentées par des modèles analytiques et/ou des simulations numériques. Nous avons également proposé une utilisation originale de dispositifs FinFETs fabriqués sur ONO enterré en fonctionnalisant le ONO à des fins d'application mémoire non volatile, volatile et unifiées. Après une introduction sur l'état de l'art des dispositifs avancés en technologie SOI, le deuxième chapitre a été consacré à la caractérisation détaillée des propriétés de dispositifs SOI planaires ultra- mince (épaisseur en dessous de 7 nm) et multi-grille. Nous avons montré l excellent contrôle électrostatique par la grille dans les transistors très courts ainsi que des effets intéressants de transport et de couplage. Une approche similaire a été utilisée pour étudier et comparer des dispositifs FinFETs à double grille et triple grille. Nous avons démontré que la configuration FinFET double grille améliore le couplage avec la grille arrière, phénomène important pour des applications à tension de seuil multiple. Nous avons proposé des modèles originaux expliquant l'effet de couplage 3D et le comportement de la mobilité dans des TFTs nanocristallin ZnO. Nos résultats ont souligné les similitudes et les différences entre les transistors SOI et à base de ZnO. Des mesures à basse température et de nouvelles méthodes d'extraction ont permis d'établir que la mobilité dans le ZnO et la qualité de l'interface ZnO/SiO2 sont remarquables. Cet état de fait ouvre des perspectives intéressantes pour l'utilisation de ce type de matériaux aux applications innovantes de l'électronique flexible. Dans le troisième chapitre, nous nous sommes concentrés sur le comportement de la mobilité dans les dispositifs SOI planaires et FinFET en effectuant des mesures de magnétorésistance à basse température. Nous avons mis en évidence expérimentalement un comportement de mobilité inhabituel (multi-branche) obtenu lorsque deux ou plusieurs canaux coexistent et interagissent. Un autre résultat original concerne l existence et l interprétation de la magnétorésistance géométrique dans les FinFETs.L'utilisation de FinFETs fabriqués sur ONO enterré en tant que mémoire non volatile flash a été proposée dans le quatrième chapitre. Deux mécanismes d'injection de charge ont été étudiés systématiquement. En plus de la démonstration de la pertinence de ce type mémoire en termes de performances (rétention, marge de détection), nous avons mis en évidence un comportement inattendu : l amélioration de la marge de détection pour des dispositifs à canaux courts. Notre concept innovant de FinFlash sur ONO enterré présente plusieurs avantages: (i) opération double-bit et (ii) séparation de la grille de stockage et de l'interface de lecture augmentant la fiabilité et autorisant une miniaturisation plus poussée que des Finflash conventionnels avec grille ONO.Dans le dernier chapitre, nous avons exploré le concept de mémoire unifiée, en combinant les opérations non volatiles et 1T-DRAM par le biais des FinFETs sur ONO enterré. Comme escompté pour les mémoires dites unifiées, le courant transitoire en mode 1T-DRAM dépend des charges non volatiles stockées dans le ONO. D'autre part, nous avons montré que les charges piégées dans le nitrure ne sont pas perturbées par les opérations de programmation et lecture de la 1T-DRAM. Les performances de cette mémoire unifiée multi-bits sont prometteuses et pourront être considérablement améliorées par optimisation technologique de ce dispositif.The evolution of electronic systems and portable devices requires innovation in both circuit design and transistor architecture. During last fifty years, the main issue in MOS transistor has been the gate length scaling down. The reduction of power consumption together with the co-integration of different functions is a more recent avenue. In bulk-Si planar technology, device shrinking seems to arrive at the end due to the multiplication of parasitic effects. The relay has been taken by novel SOI-like device architectures. In this perspective, this manuscript presents the main achievements of our work obtained with a variety of advanced fully depleted SOI MOSFETs, which are very promising candidates for next generation MOSFETs. Their electrical properties have been analyzed by systematic measurements and clarified by analytical models and/or simulations. Ultimately, appropriate applications have been proposed based on their beneficial features.In the first chapter, we briefly addressed the short-channel effects and the diverse technologies to improve device performance. The second chapter was dedicated to the detailed characterization and interesting properties of SOI devices. We have demonstrated excellent gate control and high performance in ultra-thin FD SOI MOSFET. The SCEs are efficiently suppressed by decreasing the body thickness below 7 nm. We have investigated the transport and electrostatic properties as well as the coupling mechanisms. The strong impact of body thickness and temperature range has been outlined. A similar approach was used to investigate and compare vertical double-gate and triple-gate FinFETs. DG FinFETs show enhanced coupling to back-gate bias which is applicable and suitable for dynamic threshold voltage tuning. We have proposed original models explaining the 3D coupling effect in FinFETs and the mobility behavior in ZnO TFTs. Our results pointed on the similarities and differences in SOI and ZnO transistors. According to our low-temperature measurements and new promoted extraction methods, the mobility in ZnO and the quality of ZnO/SiO2 interface are respectable, enabling innovating applications in flexible, transparent and power electronics. In the third chapter, we focused on the mobility behavior in planar SOI and FinFET devices by performing low-temperature magnetoresistance measurements. Unusual mobility curve with multi-branch aspect were obtained when two or more channels coexist and interplay. Another original result in the existence of the geometrical magnetoresistance in triple-gate and even double-gate FinFETs.The operation of a flash memory in FinFETs with ONO buried layer was explored in the forth chapter. Two charge injection mechanisms were proposed and systematically investigated. We have discussed the role of device geometry and temperature. Our novel ONO FinFlash concept has several distinct advantages: double-bit operation, separation of storage medium and reading interface, reliability and scalability. In the final chapter, we explored the avenue of unified memory, by combining nonvolatile and 1T-DRAM operations in a single transistor. The key result is that the transient current, relevant for 1T-DRAM operation, depends on the nonvolatile charges stored in the nitride buried layer. On the other hand, the trapped charges are not disturbed by the 1T-DRAM operation. Our experimental data offers the proof-of-concept for such advanced memory. The performance of the unified/multi-bit memory is already decent but will greatly improve in the coming years by processing dedicated devices.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Statistical compact model strategies for nano CMOS transistors subject of atomic scale variability

    Get PDF
    One of the major limiting factors of the CMOS device, circuit and system simulation in sub 100nm regimes is the statistical variability introduced by the discreteness of charge and granularity of matter. The statistical variability cannot be eliminated by tuning the layout or by tightening fabrication process control. Since the compact models are the key bridge between technology and design, it is necessary to transfer reliably the MOSFET statistical variability information into compact models to facilitate variability aware design practice. The aim of this project is the development of a statistical extraction methodology essential to capture statistical variability with optimum set of parameters particularly in industry standard compact model BSIM. This task is accomplished by using a detailed study on the sensitivity analysis of the transistor current in respect to key parameters in compact model in combination with error analysis of the fitted Id-Vg characteristics. The key point in the developed direct statistical compact model strategy is that the impacts of statistical variability can be captured in device characteristics by tuning a limited number of parameters and keeping the values for remaining major set equal to their default values obtained from the “uniform” MOSFET compact model extraction. However, the statistical compact model extraction strategies will accurately represent the distribution and correlation of the electrical MOSFET figures of merit. Statistical compact model parameters are generated using statistical parameter generation techniques such as uncorrelated parameter distributions, principal component analysis and nonlinear power method. The accuracy of these methods is evaluated in comparison with the results obtained from ‘atomistic’ simulations. The impact of the correlations in the compact model parameters has been analyzed along with the corresponding transistor figures of merit. The accuracy of the circuit simulations with different statistical compact model libraries has been studied. Moreover, the impact of the MOSFET width/length on the statistical trend of the optimum set of statistical compact model parameters and electrical figures of merit has been analyzed with two methods to capture geometry dependencies in proposed statistical models

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    corecore