8,460 research outputs found

    Analysis and Optimization of Mixed-Criticality Applications on Partitioned Distributed Architectures

    Get PDF

    Next Generation intelligent transport systems: a multidimensional framework for eCall implementation

    Get PDF
    The present use of Intelligent Transport Systems (ITS) can be defined as a hybrid between information and communication technologies to improve different aspects of mobility and transport. The potential value of the next generation ITS can be assessed as an integrated array of services satisfying customer preferences, optimising policy objectives and generating business revenues. Based on industry interviews, the analysis of a traffic information service and an 'emergency call' service permitted the multidimensional appreciation of deployment scenarios of these next generation Intelligent Transport Systems. The implementation of an on-board emergency call (eCall) is an ITS service which has already been deployed in different countries. Several private and public initiatives have already resulted into preliminary and purely private eCall services, mainly proprietary to the car industry, each with different underlying revenue and cost models. On the European level, a Memorandum of Understanding (MoU) instigated on the national enactment to implement a standardised eCall system. The research question involved in this paper is whether the specified ecosystem for the Belgian case confirms that all stakeholders have a particular interest in the effectuation of eCall. The findings are the result of a case study performed within the Flemish IBBT research project NextGenITS. --

    In-vehicle communication networks : a literature survey

    Get PDF
    The increasing use of electronic systems in automobiles instead of mechanical and hydraulic parts brings about advantages by decreasing their weight and cost and providing more safety and comfort. There are many electronic systems in modern automobiles like antilock braking system (ABS) and electronic brakeforce distribution (EBD), electronic stability program (ESP) and adaptive cruise control (ACC). Such systems assist the driver by providing better control, more comfort and safety. In addition, future x-by-wire applications aim to replace existing braking, steering and driving systems. The developments in automotive electronics reveal the need for dependable, efficient, high-speed and low cost in-vehicle communication. This report presents the summary of a literature survey on in-vehicle communication networks. Different in-vehicle system domains and their requirements are described and main invehicle communication networks that have been used in automobiles or are likely to be used in the near future are discussed and compared with key references

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    PharOS, a multicore OS ready for safety-related automotive systems: results and future prospects

    Get PDF
    International audienceAutomotive electrical/electronic architectures need to perform more and more functions that are mapped onto many different electronic control units (ECU) because of their different safety levels or different application domains (body, powertrain, multimedia, etc.). Freedom of interference is required to comply with the upcoming ISO 26262 standard for mixing different ASIL levels on the same ECU and is also required to cope with the safe integration of software from different suppliers. PharOS provides dedicated software partitioning mechanisms as well as controlled and efficient resource sharing by construction, from the design to the implementation stages. The main features of PharOS, contributing to this property, are presented in this paper as well as the results on its application an industry-driven case study and associated future prospects
    • …
    corecore