16 research outputs found

    The impact of spatial data redundancy on SOLAP query performance

    Get PDF
    Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.FAPESPCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)INEPFINE

    Easier surveillance of climate-related health vulnerabilities through a Web-based spatial OLAP application

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climate change has a significant impact on population health. Population vulnerabilities depend on several determinants of different types, including biological, psychological, environmental, social and economic ones. Surveillance of climate-related health vulnerabilities must take into account these different factors, their interdependence, as well as their inherent spatial and temporal aspects on several scales, for informed analyses. Currently used technology includes commercial off-the-shelf Geographic Information Systems (GIS) and Database Management Systems with spatial extensions. It has been widely recognized that such OLTP (On-Line Transaction Processing) systems were not designed to support complex, multi-temporal and multi-scale analysis as required above. On-Line Analytical Processing (OLAP) is central to the field known as BI (Business Intelligence), a key field for such decision-support systems. In the last few years, we have seen a few projects that combine OLAP and GIS to improve spatio-temporal analysis and geographic knowledge discovery. This has given rise to SOLAP (Spatial OLAP) and a new research area. This paper presents how SOLAP and climate-related health vulnerability data were investigated and combined to facilitate surveillance.</p> <p>Results</p> <p>Based on recent spatial decision-support technologies, this paper presents a spatio-temporal web-based application that goes beyond GIS applications with regard to speed, ease of use, and interactive analysis capabilities. It supports the multi-scale exploration and analysis of integrated socio-economic, health and environmental geospatial data over several periods. This project was meant to validate the potential of recent technologies to contribute to a better understanding of the interactions between public health and climate change, and to facilitate future decision-making by public health agencies and municipalities in Canada and elsewhere. The project also aimed at integrating an initial collection of geo-referenced multi-scale indicators that were identified by Canadian specialists and end-users as relevant for the surveillance of the public health impacts of climate change. This system was developed in a multidisciplinary context involving researchers, policy makers and practitioners, using BI and web-mapping concepts (more particularly SOLAP technologies), while exploring new solutions for frequent automatic updating of data and for providing contextual warnings for users (to minimize the risk of data misinterpretation). According to the project participants, the final system succeeds in facilitating surveillance activities in a way not achievable with today's GIS. Regarding the experiments on frequent automatic updating and contextual user warnings, the results obtained indicate that these are meaningful and achievable goals but they still require research and development for their successful implementation in the context of surveillance and multiple organizations.</p> <p>Conclusion</p> <p>Surveillance of climate-related health vulnerabilities may be more efficiently supported using a combination of BI and GIS concepts, and more specifically, SOLAP technologies (in that it facilitates and accelerates multi-scale spatial and temporal analysis to a point where a user can maintain an uninterrupted train of thought by focussing on "what" she/he wants (not on "how" to get it) and always obtain instant answers, including to the most complex queries that take minutes or hours with OLTP systems (e.g., aggregated, temporal, comparative)). The developed system respects Newell's cognitive band of 10 seconds when performing knowledge discovery (exploring data, looking for hypotheses, validating models). The developed system provides new operators for easily and rapidly exploring multidimensional data at different levels of granularity, for different regions and epochs, and for visualizing the results in synchronized maps, tables and charts. It is naturally adapted to deal with multiscale indicators such as those used in the surveillance community, as confirmed by this project's end-users.</p

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intĂ©rĂȘt grandissant pour les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es sont dĂ©veloppĂ©es pour faciliter la prise de dĂ©cisions stratĂ©giques des organisations, et plus spĂ©cifiquement lorsqu’il s’agit de donnĂ©es de diffĂ©rentes Ă©poques et de diffĂ©rents niveaux de granularitĂ©. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es peuvent ĂȘtre sĂ©mantiquement hĂ©tĂ©rogĂšnes et caractĂ©risĂ©es par diffĂ©rent degrĂ©s de pertinence par rapport au contexte d’utilisation. RĂ©soudre les problĂšmes sĂ©mantiques liĂ©s Ă  l’hĂ©tĂ©rogĂ©nĂ©itĂ© et Ă  la diffĂ©rence de pertinence d’une maniĂšre transparente aux utilisateurs a Ă©tĂ© l’objectif principal de l’interopĂ©rabilitĂ© au cours des quinze derniĂšres annĂ©es. Dans ce contexte, diffĂ©rentes solutions ont Ă©tĂ© proposĂ©es pour traiter l’interopĂ©rabilitĂ©. Cependant, ces solutions ont adoptĂ© une approche non systĂ©matique. De plus, aucune solution pour rĂ©soudre des problĂšmes sĂ©mantiques spĂ©cifiques liĂ©s Ă  l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles n’a Ă©tĂ© trouvĂ©e. Dans cette thĂšse, nous supposons qu’il est possible de dĂ©finir une approche qui traite ces problĂšmes sĂ©mantiques pour assurer l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ainsi, nous dĂ©finissons tout d’abord l’interopĂ©rabilitĂ© entre ces bases de donnĂ©es. Ensuite, nous dĂ©finissons et classifions les problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique qui peuvent se produire au cours d’une telle interopĂ©rabilitĂ© de diffĂ©rentes bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Afin de rĂ©soudre ces problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents systĂšme reprĂ©sentant les bases de donnĂ©es gĂ©ospatiales multidimensionnelles impliquĂ©es dans un processus d’interopĂ©rabilitĂ©. Cette communication vise Ă  Ă©changer de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents Ă  prendre des dĂ©cisions appropriĂ©es au cours du processus d’interopĂ©rabilitĂ©, nous Ă©valuons un ensemble d’indicateurs de la qualitĂ© externe (fitness-for-use) des schĂ©mas et du contexte de production (ex., les mĂ©tadonnĂ©es). Finalement, nous mettons en Ɠuvre l’approche afin de montrer sa faisabilitĂ©.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility

    Proposition de nouvelles fonctionnalités WikiSIG pour supporter le travail collaboratif en Geodesign

    Get PDF
    L’émergence du Web 2.0 se matĂ©rialise par de nouvelles technologies (API, Ajax
), de nouvelles pratiques (mashup, geotagging
) et de nouveaux outils (wiki, blog
). Il repose principalement sur le principe de participation et de collaboration. Dans cette dynamique, le Web Ă  caractĂšre spatial et cartographique c’est-Ă -dire, le Web gĂ©ospatial (ou GĂ©oWeb) connait lui aussi de fortes transformations technologiques et sociales. Le GĂ©oWeb 2.0 participatif se matĂ©rialise en particulier par des mashups entre wikis et gĂ©obrowsers (ArgooMap, Geowiki, WikiMapia, etc.). Les nouvelles applications nĂ©es de ces mashups Ă©voluent vers des formes plus interactives d’intelligence collective. Mais ces applications ne prennent pas en compte les spĂ©cificitĂ©s du travail collaboratif, en particulier la gestion de traçabilitĂ© ou l’accĂšs dynamique Ă  l’historique des contributions. Le Geodesign est un nouveau domaine fruit de l’association des SIG et du design, permettant Ă  une Ă©quipe multidisciplinaire de travailler ensemble. Compte tenu de son caractĂšre Ă©mergent, le Geodesign n’est pas assez dĂ©fini et il requiert une base thĂ©orique innovante, de nouveaux outils, supports, technologies et pratiques afin de s'adapter Ă  ses exigences complexes. Nous proposons dans cette thĂšse de nouvelles fonctionnalitĂ©s de type WikiSIG, bĂąties sur les principes et technologies du GĂ©oWeb 2.0 et visant en particulier Ă  supporter la dimension collaborative du processus de Geodesign. Le WikiSIG est dotĂ© de fonctionnalitĂ©s wiki dĂ©diĂ©es Ă  la donnĂ©e gĂ©ospatiale (y compris dans sa composante gĂ©omĂ©trique : forme et localisation) permettant d’assurer, de maniĂšre dynamique, la gestion documentĂ©e des versions des objets et l’accĂšs Ă  ces versions (et de leurs mĂ©tadonnĂ©es), facilitant ainsi le travail collaboratif en Geodesign. Nous proposons Ă©galement la deltification qui consiste en la capacitĂ© de comparer et d’afficher les diffĂ©rences entre deux versions de projets. Finalement la pertinence de quelques outils du gĂ©otraitement et « sketching » est Ă©voquĂ©e. Les principales contributions de cette thĂšse sont d’une part d’identifier les besoins, les exigences et les contraintes du processus de Geodesign collaboratif, et d’autre part de proposer des nouvelles fonctionnalitĂ©s WikiSIG rĂ©pondant au mieux Ă  la dimension collaborative du processus. Pour ce faire, un cadre thĂ©orique est dressĂ© oĂč nous avons identifiĂ© les exigences du travail collaboratif de Geodesign et proposĂ© certaines fonctionnalitĂ©s WikiSIG innovantes qui sont par la suite formalisĂ©s en diagrammes UML. Une maquette informatique est aussi dĂ©veloppĂ©e de façon Ă  mettre en oeuvre ces fonctionnalitĂ©s, lesquelles sont illustrĂ©es Ă  partir d’un cas d’étude simulĂ©, traitĂ© comme preuve du concept. La pertinence de ces fonctionnalitĂ©s dĂ©veloppĂ©es proposĂ©es est finalement validĂ©e par des experts Ă  travers un questionnaire et des entrevues. En rĂ©sumĂ©, nous montrons dans cette thĂšse l’importance de la gestion de la traçabilitĂ© et comment accĂ©der dynamiquement Ă  l’historique dans un processus de Geodesign. Nous proposons aussi d’autres fonctionnalitĂ©s comme la deltification, le volet multimĂ©dia supportant l’argumentation, les paramĂštres qualifiant les donnĂ©es produites, et la prise de dĂ©cision collective par consensus, etc.The emergence of Web 2.0 is materialized by new technologies (APIs, Ajax ...), by new practices (mashup, geotagging ...) and by new tools (wiki, blog ...). It is primarily based on the principle of participation and collaboration. In this dynamic, the web mapping with spatial character or simply called Geospatial Web (or Geoweb) evolves by strong technological and social changes. Participatory GeoWeb 2.0 is materialized in particular by mashups among wikis and gĂ©obrowsers (ArgooMap, Geowiki, WikiMapia, etc.). The new applications resulting from these mashups are moving towards more interactive forms of collective intelligence. However, these applications do not take into account the collaborative work or the traceability management or the dynamic access to the history of contributions. The Geodesign is a new area, which is the coupling between GIS and design, allowing a multidisciplinary team to work together. As it is an emergent term, the Geodesign has not be well defined and it requires innovative theoretical basis, new tools, media, technologies and practices to fit its complex requirements. We propose precisely in this thesis new features of WikiGIS, which is built on Web 2.0 technologies, and GeoWeb 2.0 aiming in particular to support the collaborative dimension of Geodesign process. The WikiGIS consists of wiki features for the geospatial data (including its geometric component: shape and location) to ensure, dynamically, the documented release management objects and access to these versions (and metadata), facilitating collaborative work on Geodesign. It aims to produce geographic information, while ensuring the quality and credibility of data created. We propose the “deltification” as one of the innovative features of WikiGIS, it is the ability to compare and display the differences between two versions of a project. Finally, the relevance of some geoprocessing and "sketching" tools is mentioned. The main contributions of the present thesis are firstly identifying the needs, requirements and constraints of collaborative Geodesign process, and secondly to offer new features of WikiSIG best meeting to the collaborative dimension of this process. For this, a theoretical framework is drawn up which we identified the requirements of the collaborative Geodesign process and we proposed some innovative features that are subsequently formalized by UML. A user mock-up is developed in order to show the WikiGIS features, which are illustrated on a simulated case study, treated as proof of concept. Finally, these concepts are ultimately validated by experts through a questionnaire and interviews. Briefly, we have amply demonstrated in this thesis the importance of traceability management and how to dynamically access in the historic of Geodesign process and we have proposed other features like deltification, multi-media component that supports the arguments, parameters describing the data produced, decision making by consensus, etc
    corecore