36 research outputs found

    Technologies for single chip integrated optical gyroscopes

    Get PDF
    Optical gyroscopes are being employed for navigational purposes for decades now and have achieved comparable or better reliability and performance than rotor-based gyroscopes. Mechanical gyros are however generally bulky, heavy and consume more power which make them unsuitable for miniaturized applications such as cube satellites and drones etc. Therefore, much effort is being expended worldwide to fabricate optical gyros having tactical grade robustness and reliability, small size, weight, cost and power consumption with minimal sacrifice of sensitivity. Integrated optics is an obvious approach to achieving this. This work comprises detailed comparative analysis of different types and structures of integrated optical gyroscopes to find out the suitable option for applications which require a resolution of <10 o/h. Based on the numerical analysis, Add-drop ring resonator-based gyro is found to be a suitable structure for integration which has a predicted shot noise limited resolution of 27 o/h and 2.71 o/h for propagation losses of 0.1 dB/cm and 0.01 dB/cm respectively. An integrated gyro is composed of several optical components which include a laser, 3dB couplers, phase/frequency modulators, sensing cavity and photodetectors. This requires hybrid integration of multiple materials technologies and so choices about which component should be implemented in which technology. This project also undertakes theoretical optimization of few of the above-mentioned optical components in materials systems that might offer the most convenient/tolerant option, this including 3dB coupler, thermo-optic phase modulator and sensing cavity (resonator and waveguide loop). In particular, the sensing element requires very low propagation loss waveguides which can best be realised from Si3N4 or Ta2O5. The optimised Si3N4 or Ta2O5 waveguides however are not optimal for other functions and this is shown and alternatives explored where the Si3N4 or Ta2O5 can easily be co-integrated. The fabrication process of low loss Si3N4 and Ta2O5 waveguides are also reported in this thesis. Si3N4 films were grown by using low pressure chemical vapor deposition (LPCVD) technique. Dry etching of Si3N4 films have been optimized to produce smooth and vertical sidewalls. Experimental results predicted that the propagation loss of 0.009 dB/cm is achievable by using optimum waveguide dimensions and silica cladding with the relatively standard processes available within the Laser Physics Centre at the Australian National University. A CMOS back end of line compatible method was developed to deposit good quality Ta2O5 films and silica claddings through ion beam sputtering (IBS) method. Plasma etching of Ta2O5 waveguides has been demonstrated by using a gas combination of CHF3/SF6/Ar/O2. Oxygen was introduced into the chamber to produce non-vertical sidewalls, so the waveguides could be cladded without voids with IBS silica. Average propagation losses of 0.17 dB/cm were achieved from Ta2O5 waveguides which appeared after extensive investigation to be limited by the spatial inhomogeneity of the processing. Lastly, a detailed theoretical and experimental analysis was performed to find out the possible causes of the higher average propagation loss in Ta2O5 waveguides, some sections being observed with 0.02 dB/cm or lower losses

    Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

    Get PDF
    The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ºC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ºC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.Ph.D.Committee Chair: Dr. Farrokh Ayazi; Committee Member: Dr. Mark G. Allen; Committee Member: Dr. Oliver Brand; Committee Member: Dr. Paul A. Kohl; Committee Member: Dr. Thomas E. Michael

    Development and experimental analysis of a micromachined Resonant Gyrocope

    Get PDF
    This thesis is concerned with the development and experimental analysis of a resonant gyroscope. Initially, this involved the development of a fabrication process suitable for the construction of metallic microstructures, employing a combination of nickel electroforming and sacrificial layer techniques to realise free-standing and self-supporting mechanical elements. This was undertaken and achieved. Simple beam elements of typically 2.7mm x 1mm x 40µm dimensions have been constructed and subject to analysis using laser doppler interferometry. This analysis tool was used to implement a fill modal analysis in order to experimentally derive dynamic parameters. The characteristic resonance frequencies of these cantilevers have been measured, with 3.14kHz, 23.79kHz, 37.94kHz and 71.22kHz being the typical frequencies of the first four resonant modes. Q-factors of 912, 532, 1490 and 752 have been measured for these modes respectively at 0.01mbar ambient pressure. Additionally the mode shapes of each resonance was derived experimentally and found to be in excellent agreement with finite element predictions. A 4mm nickel ring gyroscope structure has been constructed and analysed using both optical analysis tools and electrical techniques. Using laser doppler interferometry the first four out-of-plane modes of the ring structure were found to be typically 9.893 kHz, 11.349 kHz, 11.418 kHz and 13.904 kHz with respective Q-factors of 1151, 1659, 1573 and 1407 at 0.01 mbar ambient pressure. Although electrical measurements were found to be obscured through cross coupling between drive and detection circuitry, the in-plane operational modes of the gyroscope were sucessfully determined. The Cos2Ө and Sin2Ө operational modes were measured at 36.141 kHz and 36.346 kHz, highlighting a frequency split of 205kHz. Again all experimentally derived modal parameters were in good agreement with finite element predictions. Furthermore, using the analysis model, the angular resolution of the gyroscope has been predicted to be approximately 4.75º/s

    High-Performance Micromachined Vibratory Rate- and Rate-Integrating Gyroscopes.

    Full text link
    We aim to reduce vibration sensitivity by developing gyros that operate in the balanced mode. The balanced mode creates zero net momentum and reduces energy loss through an anchor. The gyro can differentially cancel measurement errors from external vibration along both sensor axes. The vibration sensitivity of the balanced-mode gyroscope including structural imbalance from microfabrication reduces as the absolute difference between in-phase parasitic mode and operating mode frequencies increases. The parasitic sensing mode frequency is designed larger than the operating mode frequency to achieve both improved vibration insensitivity and shock resistivity. A single anchor is used to minimize thermoresidual stress change. We developed two gyroscope based on these design principles. The Balanced Oscillating Gyro (BOG) is a quad-mass tuning-fork rate gyroscope. The relationship between gyro design and modal characteristics is studied extensively using finite element method (FEM). The gyro is fabricated using the planar Si-on-glass (SOG) process with a device thickness of 100 micrometers. The BOG is evaluated using the first-generation analog interface circuitry. Under a frequency mismatch of 5Hz between driving and sense modes, the angle random walk (ARW) is measured to be 0.44deg/sec/sqrt(Hz). The Cylindrical Rate-Integrating Gyroscope (CING) operates in whole-angle mode. The gyro is completely axisymmetric and self-aligned to maximize mechanical isotropy. The gyro offers a large frequency ratio of ~1.7 between parasitic and the wineglass modes. The CING is fabricated using the 3D Si-on-glass (SOG) process with a device thickness of 300 micrometers. The 1st and 2nd generation CINGs operate at 18kHz and 3kHz, respectively and demonstrate a frequency mismatch of <1% and a large Q (~20,000 at 18kHz and ~100,000 at 3kHz under exact mode matching). In the rate-sensing mode, the first-generation CING (18kHz) demonstrates an Ag of 0.05, an angle random walk (ARW) of 7deg/sqrt(hr), and a bias stability of 72deg/hr without temperature compensation. In the rate-sensing mode, the second-generation CING measures an Ag of 0.0065, an ARW of 0.09deg/sqrt(hr), and a bias stability of 129deg/hr without temperature compensation. In the rate-integration mode, the second-generation CING demonstrates precession with an Ag of 0.011±0.001 under a frequency mismatch of 20~80mHz during several hours of operation.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/1/jycho_1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/2/jycho_2.pd

    Earthquake-induced rotational ground motion observed by optical rotational sensors

    Get PDF

    High performance 3-folded symmetric decoupled MEMS gyroscopes

    Get PDF
    This thesis reports, for the first time, on a novel design and architecture for realizing inertial grade gyroscope based on Micro-Electro-Mechanical Systems (MEMS) technology. The proposed device is suitable for high-precision Inertial Navigation Systems (INS). The new design has been investigated analytically and numerically by means of Finite Element Modeling (FEM) of the shapes, resonance frequencies and decoupling of the natural drive and sense modes of the various implementations. Also, famous phenomena known as spring softening and spring hardening are studied. Their effect on the gyroscope operation is modeled numerically in Matlab/Simulink platform. This latter model is used to predict the drive/sense mode matching capability of the proposed designs. Based on the comparison with the best recently reported performance towards inertial grade operation, it is expected that the novel architecture further lowers the dominant Brownian (thermo-mechanical) noise level by more than an order of magnitude (down to 0.08º/hr). Moreover, the gyroscope\u27s figure of merit, such as output sensitivity (150 mV/º/s), is expected to be improved by more than two orders of magnitude. This necessarily results in a signal to noise ratio (SNR) which is up to three orders of magnitude higher (up to 1,900mV/ º/hr). Furthermore, the novel concept introduced in this work for building MEMS gyroscopes allows reducing the sense parasitic capacitance by up to an order of magnitude. This in turn reduces the drive mode coupling or quadrature errors in the sensor\u27s output signal. The new approach employs Silicon-on-Insulator (SOI) substrates that allows the realization of large mass (\u3e1.6mg), large sense capacitance (\u3e2.2pF), high quality factors (\u3e21,000), large drive amplitude (~2-4 µm) and low resonance frequency (~3-4 KHz) as well as the consequently suppressed noise floor and reduced support losses for high-performance vacuum operation. Several challenges were encountered during fabrication that required developing high aspect ratio (up to 1:20) etching process for deep trenches (up to 500 µm). Frequency Response measurement platform was built for devices characterization. The measurements were performed at atmospheric pressures causing huge drop of the devices performance. Therefore, various MEMS gyroscope packaging technologies are studied. Wafer Level Packaging (WLP) is selected to encapsulate the fabricated devices under vacuum by utilizing wafer bonding. Through Silicon Via (TSV) technology was developed (as connections) to transfer the electrical signals (of the fabricated devices) outside the cap wafers

    Aeronautical Engineering. A continuing bibliography with indexes, supplement 156

    Get PDF
    This bibliography lists 288 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1982

    Design and Analysis of Extremely Low-Noise MEMS Gyroscopes for Navigation

    Full text link
    Inertial measurement sensors that include three gyroscopes and three accelerometers are key elements of inertial navigation systems. Miniaturization of these sensors is desirable to achieve low manufacturing cost, high durability, low weight, small size, and low energy consumption. However, there is a tradeoff between miniaturization of inertial sensors and their performance. Developing all the necessary components for navigation using inertial sensors in a small volume requires major redesign and innovation in these sensors. The main goal of this research is to identify, analyze and optimize parameters that limit the performance of miniaturized inertial gyroscopes and provide comprehensive design guidelines for achieving multi-axis navigation-grade MEMS gyroscopes. It is shown that the fundamental performance limit of inertial gyroscopes is angle random walk (ARW) due to thermo-mechanical and electronic noises. Theoretical models show that resonant frequency, frequency mismatch between sensing and driving modes, effective mass, quality factor (Q), driving amplitude, sensing gap, sensing area and angular gain are the most important parameters that need to be optimized for best noise and most practical device design. In this research, two different structures are considered for low-noise MEMS gyroscopes: 1) shell gyroscopes in yaw direction, and 2) a novel super sensitive stacked (S3) gyroscope for pitch/roll directions. Extensive analytical and FEM numerical modeling was conducted throughout this research to investigate the mechanisms that affect Q and noise in shell resonators used in yaw-rate gyroscopes. These models provided insight into ways to significantly improve resonator design, structure, fabrication, and assembly and helped fabricate fused silica shells with Qs as high as 10 million (at least an order of magnitude larger than other similar shells). Noise performance of these fused silica shell gyroscopes with 5 mm dimeter improved by about two orders of magnitude (< 5×10-3 °/√hr), representing one of the best noise performances reported for a MEMS gyroscope. To build a high-performance MEMS-based planar vibratory pitch/roll gyroscope, it is critical to have a resonator with high Q in the out-of-plane resonant mode. Existing out-of-plane resonators suffer from low Q due to anchor loss or/and thermoelastic dissipation (TED). Increasing the thickness of the out-of-plane resonator reduces TED, but this increases the anchor loss. To reduce anchor loss significantly, a novel structure called S3 is designed. In this structure, two similar resonators are stacked on top of each other and move in opposite directions, thus providing a balanced stacked resonator with reduced anchor loss. The reduction of anchor loss allows larger thickness of silicon S3 gyroscopes, leading to a very low TED. A large-scale model of a stacked balanced resonator is fabricated and tested. The initial results show more than 50 times improvement in Q (measured in air) when resonators are stacked. It is expected that by testing this device in vacuum, Q would improve by more than three orders of magnitude. The S3 design also has an extremely large effective mass, a very large angular gain, a large driving amplitude, a very small sensing gap, and a large sensing area. It is estimated that a 500 µm thick silicon S3 gyroscope provides ARW of about 1.5×10-5 °/√hr (more than two orders of magnitude better performance than a navigation-grade gyroscope). This extraordinary small value can be improved for 1mm thick fused silica to 7.6×10-7 °/√hr if the technology for etching fused silica could be developed in the future.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147701/1/darvishi_1.pd

    14th International Conference on RF Superconductivity

    Get PDF

    Millimeter-Wave Concurrent Dual-Band BiCMOS RFICs for Radar and Communication RF Front-End

    Get PDF
    The recent advancement in silicon-based technologies has offered the opportunity for the development of highly-integrated circuits and systems in the millimeter-wave frequency regime. In particular, the demand for high performance multi-band multi-mode radar and communication systems built on silicon-based technologies has been increased dramatically for both military and commercial applications. This dissertation presents the design and implementation of advanced millimeter-wave front-end circuits in SiGe BiCMOS process including a transmit/receive switch module with integrated calibration function, low noise amplifier, and power amplifier for millimeter-wave concurrent dual-band dual-polarization radars and communication systems. The proposed circuits designed for the concurrent dual-band dual-polarization radars and communication systems were fabricated using 0.18-μm BiCMOS process resulting in novel circuit architectures for concurrent multi-band operation. The developed concurrent dual-band circuits fabricated on 0.18-μm BiCMOS process include the T/R/Calibration switch module for digital beam forming array system at 24.5/35 GHz, concurrent dual-band low noise amplifiers at 44/60 GHz, and concurrent dual-band power amplifier at 44/60 GHz. With having all the design frequencies closely spaced to each other showing the frequency ratio below 1.43, the designed circuits provided the integrated dual-band filtering function with Q-enhanced frequency responses. Inspired by the composite right/left- handed metamaterial transmission line approaches, the integrated Q-enhanced filtering sub-circuits provided unprecedented dual-band filtering capability. The new concurrent dual-band dual-mode circuits and system architecture can provide enhanced radar and communication system performance with extended coverage, better image synthesis and target locating by the enhanced diversity. The circuit level hardware research conducted in this dissertation is expected to contribute to enhance the performance of multi-band multi-mode imaging, sensing, and communication array systems
    corecore